Lecture 2: Quick review from previous lecture

- Gaussian elimination to solve a linear system $A \mathbf{x}=\mathbf{b}$.
- I_{n} is the n-by-n identity matrix, defined by:

$$
I_{n}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)_{n \times n}
$$

or $I_{n}=\operatorname{diag}(1, \cdots, 1)$.

- The first problem set has been posted on Canvas. It is due next Friday, $1 / 31$, at the end of class.
- There will be a quiz in class on Wednesday $(1 / 29)$.
1.3 Gaussian Elimination
- Suppose E is a 3 -by- 3 elementary matrix that adds 7 times the $1^{\text {st }}$ row to the $3^{\text {rd }}$ row. Then:

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
7 & 0 & 1
\end{array}\right)
$$

- How to UNDO the effect of this row operation?
substracting 7 (1) from 3:
We denote it by $E^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -\eta & 0 & 1\end{array}\right)$.

$$
E E^{-1}=E^{-1} E=I_{3}
$$

- When performing Gaussian elimination, when we reach the $j^{\text {th }}$ row, element (j, j) of the new augmented matrix is called the pivot for that row.

Example: We look at the example:

$$
\left\{\begin{array}{l}
x+2 y+2 z=2 \\
2 x+10 y=1 \\
4 x+y+4 z=0
\end{array}\right.
$$

$$
\left(\begin{array}{ccc|c}
\sqrt[1]{2} & 2 & 2 & 2 \\
2 & 10 & 0 & 1 \\
4 & 1 & 4 & 0
\end{array}\right)
$$

1st pout is element $(1,1)$, that is, 1 .

$$
\xrightarrow[\substack{\text { MATH } 4242}]{\stackrel{(2)-2(1)}{(30}}\left(\begin{array}{ccc|c}
1 & 2 & 2 & 2 \\
0 & 6 & -4 & -3 \\
0 & -7 & -4 & -8
\end{array}\right) \quad \text { and pint } \quad 1, \quad(2,2) \text {, that is, } 6
$$

[Example Continue]
$\xrightarrow{(3)+\frac{7}{6}(2)}\left(\begin{array}{ccc|c}1 & 2 & 2 & 2 \\ 0 & 6 & -4 & -3 \\ 0 & 0 & \frac{-26}{3} & \frac{-23}{2}\end{array}\right)$.
ard pinot 1, $(3,3)$, that is, $-26 / 3$
[Exercise]: find x, y, z by using "back-sibstitution".
\checkmark If at any point in the process one of the pivots is 0 , then we are stuck! We can't use a row with a zero pivot to eliminate the entries beneath that pivot.

Example: Suppose we are solving a 4-by-4 system and after using the first row to eliminate entries $(2,1),(3,1)$, and $(4,1)$, we have the following matrix:

$$
\left(\begin{array}{cccc|c}
5 & 2 & 3 & 5 & 2 \\
0 & 0 & 2 & 6 & 9 \\
0 & 1 & 3 & 8 & 3 \\
0 & 2 & 5 & 1 & 8
\end{array}\right)
$$

- How to fixthis? We mill permute row (2) with other row (will discussed later).
- If a matrix A has all non-zero pivots, it is called regular. That is, regular matrices are those for which Gaussian elimination can be performed without switching the order of rows.

For any regular matrix A, we can multiply it on the left by a sequence of elementary matrices E_{1}, \ldots, E_{m}, so that the product is an upper triangular matrix U :

$$
E_{m} E_{m-1} \cdots E_{1} A=U
$$

* Some observation:

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \text { associtited to row (2) }+ \text { a row (1) } \\
& E_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
b & 0 & 1
\end{array}\right), \quad \text { row } 3+b \text { row (1) } \\
& \left.E_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right), c\right) \\
& E_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-a & 1 & 0 \\
0 & 0 & 1
\end{array}\right), E_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-b & 0 & 1
\end{array}\right), E_{3}^{+}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -c 1
\end{array}\right) .
\end{aligned}
$$

Then $E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -b & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c & 1\end{array}\right)$

$$
=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-a & 1 & 0 \\
-b & -c & 1
\end{array}\right)
$$

We now can see that (zero above main diagonal
$E_{1}^{-1} E_{2}^{-1} \cdots E_{m}^{-1}$ has the form

$$
L=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
x & 1 & & \\
x & & \ddots & 0 \\
\dot{x} & \cdots & x & 1
\end{array}\right]
$$

Then

$$
E_{m} \cdots E_{1} A=L
$$

$$
\begin{aligned}
& \left(E_{1}^{1} \cdots E_{m-1}^{-1} E_{m}^{1}\right) E_{m} \ldots E_{1} A=\left(E_{1}^{-1} \cdots E_{m-1}^{-1} E_{m}^{-1}\right) \\
& \quad \text { So, } \quad A=I A=\underbrace{\left.E_{1}^{-1} \cdots E_{m-1}^{-1} E_{m}^{-1}\right)}_{\text {denoted by } L} U .
\end{aligned}
$$

Facts:

(1) We have shown that any regular matrix A can be factored as $A=L U$, where U is upper triangular and L is lower triangular.
Furthermore, L has 1's on its main diagonal, and U has non-zero elements on its main diagonal (the pivots of A).
(2) L, \tilde{L} are $n \times n$ lower triangular matrices, so is $L \tilde{L}$.
(3) U, \tilde{U} are $n \times n$ upper triangular matrices, so is $U \tilde{U}$.

