
Lecture 20: Quick review from previous lecture

• An n× n matrix K is called positive definite if

– it is symmetric, KT = K

– satisfies the positivity condition

xTKx > 0 for all 0 6= x ∈ Rn.

We write K > 0 to mean that K is positive definite matrix.

• Identify 2× 2 positive definite matrix:(
a b

b c

)
is positive definite if and only if

a > 0 and ac− b2 > 0

• Identify any n× n positive definite matrix:

An n-by-n matrix A is positive definite if and only if it is:

(a) symmetric;

(b) regular, hence A = LDLT ; and

(c) D has all positive diagonal entries, i.e. A has positive pivots.

—————————————————————————————————

Today we will continue our discuss on Positive definite matrix.

—————————————————————————————————

• I will hold extra office hour this Thursday (3/19) from 8:30-9:30am

Zoom meeting ID: 904-508-509

• Jesse(TA): will office hours as usual this week.

His Zoom meeting ID: 707-312-921

(Those meeting IDs can be found in our Canvas course website.)

• Quiz 4 is Canceled; No quizzes for the remainder of the semester.
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§ Constructing positive definite or positive semidefinite matrices

Fact: Suppose A is any m×n matrix. Then K = ATA is positive semidefinite.

[To see this:]

Fact: K = ATA is positive definite when the rank of A is n (in particular, we

must have n ≤ m); or equivalently, the columns of A are linearly independent.

*If we write A = [v1, . . . ,vn], then entry (i, j) of ATA is vT
i vj = 〈vi,vj〉.

That is, ATA is the matrix of all inner products between the columns of A.
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This is called a Gram matrix. More generally, if V is any inner product space,

then the Gram matrix for vectors v1, . . . ,vn is the matrix K given by

Fact: (1) In Rn, Gram matrices are always positive semidefinite;

(2) they are positive definite precisely when the vectors v1, . . . ,vn are linearly

independent.

Example.

(1) A =

 1 0

2 1

1 0

 then the Gram matrix for A is:

ATA =

(
1 2 1

0 1 0

) 1 0

2 1

1 0

 =

(
6 2

2 1

)

(2) B =

 1 −2

2 −4

1 −2

 then the Gram matrix for B is:

BTB =

(
1 2 1

−2 −4 −2

) 1 −2

2 −4

1 −2

 =

(
6 −12

−12 24

)
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More generally, let’s take any m-by-m positive definite matrix C. Then

〈x,y〉 = xTCy

defines a valid inner product on Rm.

Then the Gram matrix of v1, · · · ,vn is

K =

 〈v1,v1〉 · · · 〈v1,vn〉
... ...

〈vn,v1〉 · · · 〈vn,vn〉


with respect to inner product 〈vi,vj〉 = vT

i Cvj.

If A = [v1, . . . ,vn] is any m-by-n matrix, then

K = ATCA.

Fact: Let C be a positive definite matrix.

(1) ATCA is positive semidefinite,

(2) ATCA is positive definite if v1, . . . ,vn are linearly independent (i.e. kerA =

{0}).
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Fact: Let K = ATCA, where A ∈ Mm×n and C is a m×m positive definite

matrix. Then

kerK = kerA
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§ To find the symmetric matrix A from the quadratic form

Suppose A = (aij) is an m-by-n matrix.

The formula for xTAy is:

xTAy =

m∑
i=1

n∑
j=1

aijxiyj

In particular, with a quadratic form xTAx defined by the symmetric matrix

A = (aij), aij = aji (square, of size n-by-n), we have

xTAx =

n∑
i=1

n∑
j=1

aijxixj

How do we go backwards to find the symmetric A from xTAx?

Example.

1. In 2 dimensions, suppose

xTAx = 3x21 − 4x1x2 + 7x22.

Then

A =

2. In 3 dimensions, suppose

xTKx = x21 + 4x1x2 − 2x1x3 + 6x22 + 9x23.

Then

K =
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