Lecture 20: Quick review from previous lecture

- An $n \times n$ matrix K is called positive definite if
- it is symmetric, $K^{T}=K$ $q(x)=x^{+} K x$ is called "quadratic
- satisfies the positivity condition

$$
\mathbf{x}^{T} K \mathbf{x}>0 \quad \text { for all } \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n} .
$$

We write $K>0$ to mean that K is positive definite matrix. K is $\begin{aligned} & \text { positive } \\ & \text { semidefaite }\end{aligned}$

- Identify 2×2 positive definite matrix:
$A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is positive $\begin{array}{r}\text { definite if and only if } \\ a>0 \text { and } \widetilde{a c-b^{2}}>0\end{array}$
- Identify any $n \times n$ positive definite matrix:

An n-by- n matrix A is positive definite if and only if it is:
(a) symmetric;
(b) regular, hence $A=L D L^{T}$; and
(c) D has all positive diagonal entries, i.e. A has positive pivots.

$A \xrightarrow{\text { Gaussian }} U=\left(\right.$| u_{11} | | $*$ |
| :---: | :---: | :---: |
| 0 | | $u_{n n}^{*}$ |$), u_{i n} \neq 0, \ldots, u_{n n} \pm 0, \quad A=L \cup=\frac{L L^{\top}}{D}$

Today we will continue our discuss on Positive definite matrix.

- I will hold extra office hour this Thursday (3/19) from 8:30-9:30am Zoom meeting ID: 904-508-509
- Jesse(TA): will office hours as usual this week.

His Zoom meeting ID: 707-312-921
(Those meeting IDs can be found in our Canvas course website.)

- Quiz 4 is Canceled; No quizzes for the remainder of the semester.

$$
\text { Hew } 14 \% \text {; Quiz }=4 \%
$$

\S Constructing positive definite or positive semidefinite matrices
Fact: Suppose A is any $m \times n$ matrix. Then $K=A^{T} A$ is positive semidefinite.
[To see this:]

$$
\text { lis:] } \begin{aligned}
x^{\top} K x & =x^{\top}\left(A^{\top} A\right) x \\
& =\left(x^{\top} A^{\top}\right) A x \quad, \quad z=A x, z^{\top}=(A x)^{\top}=x^{\top} A^{\top} . \\
& =z^{\top} z \\
& =\|z\|^{2} \geq 0 .
\end{aligned}
$$

Fact: $K=A^{T} A$ is positive definite when the rank of A is n (in particular, we must have $n \leq m$); or equivalently, the columns of A are linearly independent.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right], \quad v_{i}: i^{\text {th }} \text { column of } A, 1 \leq i \leq n . \\
& x^{\top} K \times=0, x^{\top} A^{\top} A x=0 \\
&(A x)^{\top} A x=0 \\
&\|A x\|^{2}=0 \\
& A x=0 \\
& {\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=0 } \\
& x_{1} u_{1}+\ldots+x_{n} v_{n}=0
\end{aligned}
$$

$$
\text { Since } v_{1} \ldots, v_{n} \text { are linearly indepedent }
$$

$$
\text { Thus. } K>0 \text {. }
$$

$$
x_{1}=0, \ldots, x_{n}=0 \quad(x=0)
$$

*If we write $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$, then entry (i, j) of $A^{T} A$ s $\mathbf{v}_{i}^{T} \mathbf{v}_{j}=\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$.
That is, $A^{T} A$ is the matrix of all inner products between the columns of A.

This is called a Gram matrix. More generally, if V is any inner product space, then the Gram matrix for vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is the matrix K given by

$$
K=\left(\begin{array}{rrrr}
\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle & \begin{array}{rrr}
\left.\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle \\
\left\langle\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle & \ldots \\
\vdots & \left\langle\mathbf{v}_{1}, \mathbf{v}_{n}\right\rangle \\
\vdots & \vdots & \ddots
\end{array} & \vdots \\
\left\langle\mathbf{v}_{2}, \mathbf{v}_{n}\right\rangle \\
\left\langle\mathbf{v}_{n}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{n}, \mathbf{v}_{2}\right\rangle & \cdots & \left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle
\end{array}\right)_{n \times n}=A^{\top} A \text {, where } A=\left[v_{1} \ldots v_{n}\right] \text {. }
$$

Fact: (1) In \mathbb{R}^{n}, Gram matrices are always positive semidefinite;
(2) they are positive definite precisely when the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Example.
(1) $\left\{v_{1}, v_{2}\right\}$ are linearly independent.

$$
K=A^{T} A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
6 & 2 \\
2 & 1
\end{array}\right)_{2 \times 2}
$$

(2) $B=\left(\begin{array}{l}r_{1} \\ 1 \\ 2 \\ 1\end{array}\right)^{v_{2}}\left(\begin{array}{r}V_{2} \\ -2 \\ -4 \\ -2\end{array}\right)^{2}$ then the Gram matrix for B is:

$$
B^{T} B=\left(\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -4 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
2 & -4 \\
1 & -2
\end{array}\right)=\left(\begin{array}{cc}
6 & -12 \\
-12 & 24
\end{array}\right)
$$

$v_{2}=-2 v_{1},\left\{v_{1}, v_{2}\right\}$ linearly dependent, $B^{\top} B \geq 0$, but not

More generally, let's take any m-by- m positive definite matrix C. Then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} C \mathbf{y}
$$

defines a valid inner product on \mathbb{R}^{m}.
Then the Gram matrix of $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ is

$$
K=\left(\begin{array}{ccc}
\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle & \cdots & \left\langle\mathbf{v}_{1}, \mathbf{v}_{n}\right\rangle \\
\vdots & & \vdots \\
\left\langle\mathbf{v}_{n}, \mathbf{v}_{1}\right\rangle & \cdots & \left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle
\end{array}\right)
$$

with respect to inner product $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\mathbf{v}_{i}^{T} C \mathbf{v}_{j}$.
If $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is any m-by- n matrix, then

$$
K=A^{T}[\bar{C}]
$$

* Prevous page is the "special case" int $C=I_{n}$

Fact: Let C be a positive definite matrix.
(1) ${ }^{2} A^{T} C A$ is positive semidefinite,
(2) $2^{\prime} A^{T} C A$ is positive definite if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent (ie. ger $A=$ $\{0\}$).
(1)

$$
\begin{aligned}
& x^{+} K x=x^{\top}\left(A^{\top}(A) x\right. \\
& \left.=z^{\top} C z\right)^{z=A x} \\
& \left\{\begin{array}{lll}
> & 0 & \text { if } \\
= & 0 & \text { if } \\
& z=A x \neq 0
\end{array} \text { due to } C>0\right. \\
& x^{+} K x \geq 0 \text {. Thus, we can get } K \geq 0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x^{\top} K x=0 \quad \Leftrightarrow \quad z=A x=0 \\
& \Leftrightarrow \quad\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)=0 \quad\left(x, v_{1}+\ldots+x_{n} v_{n}=0\right) \\
& \text { since }\left\{v_{1}, \ldots, v_{n}\right\} \text { l independent } \\
& \text { Thus } k>^{+} 0 \quad x \quad n=0,(x=0
\end{aligned}
$$

Fact: Let $K=A^{T} C A$, where $A \in M_{m \times n}$ and $(C$ is a $m \times m$ positive definite matrix. Then

$$
\operatorname{ker} K=\operatorname{ker} A
$$

(1) $x \in \operatorname{Kerk}$. We need to show $x \in \operatorname{Ker} A$.

$$
\begin{aligned}
& x \in \operatorname{Ker} K \quad \text { Then } K x=0 . \\
& x^{\top} K x=0 \\
\Rightarrow & X^{\top} A^{\top} C A x=0, z=A x \\
\Rightarrow & z^{\top} C z=0 \\
\Rightarrow & A^{\prime \prime \prime}=0 \quad \text { since } C>0 . \\
\Rightarrow & x \in \operatorname{Ker} A .
\end{aligned}
$$

(2) $x \in \operatorname{Ker} A$. We need to show $x \in \operatorname{Ker} K$. $x \in \operatorname{ker} A$.

$$
A x=0
$$

$$
K x=\left(A^{\top} C A\right) x=A^{\top} C(\overbrace{A_{x}}^{0})=A^{\top} C 0=0 .
$$

so, $x \in$ Kor K.

\S To find the symmetric matrix A from the quadratic form

 Suppose $A=\left(a_{i j}\right)$ is an m-by- n matrix.The formula for $\mathbf{x}^{T} A \mathbf{y}$ is:

$$
\mathbf{x}^{T} A \mathbf{y}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} x_{i} y_{j}
$$

In particular, with a quadratic form $\mathbf{x}^{T} A \mathbf{x}$ defined by the symmetric matrix $A=\left(a_{i j}\right), a_{i j}=a_{j i}$ (square, of size n-by- n), we have

$$
\mathbf{x}^{T} A \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

How do we go backwards to find the symmetric A from $\mathbf{x}^{T} A \mathbf{x}$?

Example.

1. In 2 dimensions, suppose

$$
\begin{gathered}
\mathbf{x}^{T} A \mathbf{x}=3 x_{1}^{2}-4 x_{1} x_{1} \\
A=\left(\begin{array}{cc}
3 & -2 \\
-2 & 7
\end{array}\right)_{2 \times 2}
\end{gathered}
$$

Then
2. In 3 dimensions, suppose

Then

$$
\begin{aligned}
& \mathbf{x}^{T} K \mathbf{x}=x_{1}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}+6 x_{2}^{2}+9 x_{3}^{2} . \\
& K=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 6 & 0 \\
-1 & 0 & 9
\end{array}\right)_{3 \times 3}^{-2 / 2=-1}
\end{aligned}
$$

