Lecture 20: Quick review from previous lecture

• An $n \times n$ matrix K is called **positive definite** if q(x) = x * Kx is called 'quadratic form' - it is symmetric, $K^T = K$ - satisfies the positivity condition $\mathbf{x}^T K \mathbf{x} > 0 \qquad \text{for all } \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n.$ We write K > 0 to mean that K is positive definite matrix. $\overset{\mathbf{x} \ \mathcal{K} \ is}{} semi \ definite$ XTKX 20 for all X • Identify 2×2 positive definite matrix: A = $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive definite if and only if a > 0 and $ac - b^2 > 0$ • Identify any $n \times n$ positive definite matrix: An n-by-n matrix A is positive definite if and only if it is: (a) symmetric; (b) regular, hence $A = LDL^T$; and (c) D has all positive diagonal entries, i.e. A has positive pivots. Gaussian $U = \begin{pmatrix} u_{11} \\ \vdots \\ \vdots \\ u_{1n} \end{pmatrix}, \quad u_{11} \neq 0, \dots, \quad u_{nn} \neq 0.$ $A = L U = L \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D}$

Today we will continue our discuss on Positive definite matrix.

- I will hold extra office hour this Thursday (3/19) from 8:30-9:30am Zoom meeting ID: 904-508-509
- Jesse(TA): will office hours as usual this week. His Zoom meeting ID: 707-312-921
- (Those meeting IDs can be found in our Canvas course website.)
- Quiz 4 is Canceled; No quizzes for the remainder of the semester.

HW 14 %; Quiz : 4%

§ Constructing positive definite or positive semidefinite matrices Fact: Suppose A is any $m \times n$ matrix. Then $K = A^T A$ is positive semidefinite. [To see this:] $\chi^T K \times = \chi^T (A^T A) \times$ $= (\chi^T A^T) A \chi$, $z = A \chi$, $z^T = (A \times)^T = \chi^T A^T$ $= z^T z$ $= ||Z||^2 = 0$. Thus, K is positive semidefinite, $\chi^T K \times = 0$ (if K > 0) $z = A \times = 0$

Fact: $K = A^T A$ is positive definite when the rank of A is n (in particular, we must have $n \leq m$); or equivalently, the columns of A are linearly independent.

$$A = \left[\begin{array}{ccc} \nabla_{1} & \cdots & \nabla_{n} \end{array} \right], \quad \forall_{i} := i^{th} \ column \ d \ A \ , l \in i \leq n.$$

$$x^{T} K \ x = 0 \ , \qquad x^{T} A^{T} A \ x = 0 \ , \qquad (A_{X})^{T} A_{X} = 0 \ , \qquad (A_{X})^{T} A_{X} = 0 \ , \qquad (A_{X})^{T} A_{X} = 0 \ , \qquad (A_{X} = 0) \ , \qquad (A_{X} = 0) \ , \qquad (X_{i} = 0) \ , \qquad (X$$

*If we write $A = [\mathbf{v}_1, \dots, \mathbf{v}_n]$, then entry (i, j) of $A^T A$ is $\mathbf{v}_i^T \mathbf{v}_j = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. That is, $A^T A$ is the matrix of all inner products between the columns of A.

MATH 4242-Week 9-1

This is called a **Gram matrix**. More generally, if V is any inner product space, then the Gram matrix for vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is the matrix K given by

$$K = \begin{pmatrix} (\mathbf{v}_1, \mathbf{v}_1) & (\mathbf{v}_1, \mathbf{v}_2) & \dots & \langle \mathbf{v}_1, \mathbf{v}_n \rangle \\ \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_2, \mathbf{v}_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_n, \mathbf{v}_1 \rangle & \langle \mathbf{v}_n, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_n, \mathbf{v}_n \rangle \end{pmatrix} = A^T A \quad \text{, where } A = [v_1 - v_n]$$

Fact: (1) In \mathbb{R}^n , Gram matrices are always positive semidefinite; (2) they are <u>positive definite</u> precisely when the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

Example.
$$V_1$$
 V_2 are linearly independent
(1) $A = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{3 \times 2}$ then the Gram matrix for A is:
 $S^{\circ} = A^{T}A = O$
(1) $A = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{3 \times 2}$ then the Gram matrix for A is:
 $S^{\circ} = A^{T}A = O$
 $K = A^{T}A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 & 1 \end{pmatrix}_{2 \times 2}$
(2) $B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix}$ then the Gram matrix for B is:
 $B^{T}B = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -4 & -2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & -4 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & -12 \\ -12 & 24 \end{pmatrix}$
 $V_{2} = -2V_{1}$, $\{V_{1}, V_{2}\}$ \mathcal{I} meanly dependent, $B^{T}B \neq O$, but not

More generally, let's take any m-by-m positive definite matrix C. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T C \mathbf{y}$$

defines a valid inner product on \mathbb{R}^m .

Then the Gram matrix of $\mathbf{v}_1, \cdots, \mathbf{v}_n$ is

$$K = \begin{pmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_1, \mathbf{v}_n \rangle \\ \vdots & & \vdots \\ \langle \mathbf{v}_n, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_n, \mathbf{v}_n \rangle \end{pmatrix}$$

with respect to inner product $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \mathbf{v}_i^T C \mathbf{v}_j$. If $A = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ is any *m*-by-*n* matrix, then

$$K = A^T \boxed{C} A.$$

* Prevous page 3 the "special case" with
$$C = I_n$$
.
Fact: Let C be a positive definite matrix.
(1) A^TCA is positive semidefinite,
(2) A^TCA is positive definite if $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent (i.e. ker $A = \{0\}$).
(1) $\mathbf{x}^T \mathbf{K} \mathbf{x} = \mathbf{x}^T (C \mathbf{A}) \mathbf{x}$
 $= \mathbf{z}^T (C \mathbf{z})^T \mathbf{z} = A \mathbf{x}$
 $\begin{cases} \geq 0 & \text{if } \mathbf{z} = A \mathbf{x} \neq 0. \\ (1) = 0 & \text{if } \mathbf{z} = A \mathbf{x} = 0. \end{cases}$
 $\mathbf{x}^T \mathbf{K} \mathbf{x} \geq 0$. Thus, we can get $\mathbf{K} \geq 0$.
(2) $\mathbf{x}^T \mathbf{K} \mathbf{x} = \mathbf{0} \iff \mathbf{z} = A \mathbf{x} = 0.$
(2) $\mathbf{x}^T \mathbf{K} \mathbf{x} = \mathbf{0} \iff \mathbf{z} = A \mathbf{x} = 0.$
(2) $\mathbf{x}^T \mathbf{K} \mathbf{x} = \mathbf{0} \iff \mathbf{z} = A \mathbf{x} = 0.$
(3) $\mathbf{x}^T \mathbf{K} \mathbf{x} = \mathbf{0} \iff \mathbf{z} = A \mathbf{x} = 0.$
(4) $\mathbf{x}^T \mathbf{K} \mathbf{x} = \mathbf{0} \iff \mathbf{z} = A \mathbf{x} = 0.$
(5) $[\mathbf{v}_1^T \cdots \mathbf{v}_n] \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \mathbf{0} (\mathbf{x}_n \mathbf{v}_1 + \dots + \mathbf{v}_n \mathbf{v}_{n=0}) = \mathbf{x}_n = \mathbf{0}, (\mathbf{x} = 0)$
(4) $\mathbf{x}_1 = \dots = \mathbf{x}_n = 0, (\mathbf{x} = 0)$
(5) $\mathbf{x}_1 = \dots = \mathbf{x}_n = 0, (\mathbf{x} = 0)$
(5) $\mathbf{x}_1 = \dots = \mathbf{x}_n = 0, (\mathbf{x} = 0)$.
(5) $\mathbf{x}_1 = \dots = \mathbf{x}_n = 0, (\mathbf{x} = 0)$.

Fact: Let $K = A^T C A$, where $A \in M_{m \times n}$ and C is a $m \times m$ positive definite matrix. Then
$\ker K = \ker A$
(1) XEKerK. We need to show XEKerA.
$x \in Ker K$. Then $Kx = 0$.
$X^T K = 0$
$ = \sum_{x} x^{T} A^{T} (A \times = 0) z = A x $ $ = \sum_{x} z^{T} C z = 0 $
=) z = 0 since C > 0.
$\Rightarrow x \in \ker A #$
(2) XEKERA. We need to show XEKerK.
X E Ker A.
$A \times = O$
$K_X = (A^T C A)_X = A^T C (A_X) = A^T C O = O.$
So, XE Ker K. #

 \sim

§ To find the symmetric matrix A from the quadratic form Suppose $A = (a_{ij})$ is an *m*-by-*n* matrix.

The formula for $\mathbf{x}^T A \mathbf{y}$ is:

$$\mathbf{x}^T A \mathbf{y} = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i y_j$$

In particular, with a quadratic form $\mathbf{x}^T A \mathbf{x}$ defined by the symmetric matrix $A = (a_{ij}), a_{ij} = a_{ji}$ (square, of size *n*-by-*n*), we have

$$\mathbf{x}^T A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

How do we go backwards to find the symmetric A from $\mathbf{x}^T A \mathbf{x}$? Example.

1. In 2 dimensions, suppose

$$\mathbf{x}^{T}A\mathbf{x} = 3x_{1}^{2} - 4x_{1}x_{2} + 7x_{2}^{2}$$
Then

$$A = \begin{pmatrix} 3 & -7 \\ -2 & 7 \end{pmatrix}_{2 \times 2}$$

2. In 3 dimensions, suppose

$$\mathbf{x}^{T}K\mathbf{x} = \underline{x_{1}^{2}} + 4\underline{x_{1}x_{2}} + 2\underline{x_{1}x_{3}} + 6\underline{x_{2}^{2}} + 9\underline{x_{3}^{2}}, \qquad \mathbf{x_{2}^{2}} = \mathbf{z}$$
Then

$$K = \begin{pmatrix} 1 & \mathbf{z} & \mathbf{z} & \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} & \mathbf{z} \\ \mathbf{z$$