
Lecture 21: Quick review from previous lecture

• The Gram matrix is

– In Rn, Gram matrices are always positive semidefinite

– they are positive definite precisely when the vectors v1, . . . ,vn are linearly
independent.

—————————————————————————————————
Today we will discuss ”Orthogonal(Orthonormal) bases”

—————————————————————————————————
Lecture video can be found in Canvas ”Media Gallery”
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3.6 Complex Vector Spaces

To finish Chapter 3: let’s briefly discuss complex vector spaces and complex inner
products.

Recall that a complex number as an expression of the form

z = x + iy, x, y 2 R.

The complex conjugate of z = x + iy is

z = x� iy.

Thus,
|z|2 = zz

• Everything we have done in Chapter 1 with Rn and real-valued scalars works
in Cn with complex-valued scalars.

• In particular, Gaussian elimination works exactly the same way if the numbers
are in C instead of R.
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§ Inner product on Cn
:

hw, zi =
nX

i=1

wizi

• This way, hz, zi =
Pn

i=1 zizi =
Pn

i=1 |zi|2, which is positive if z 6= 0.

• Note that hw, zi is not symmetric; rather it is conjugate-symmetric:

hw, zi = hz,wi

• For c, d 2 C,
hcu + dv,wi = chu,wi + dhv,wi
hu, cv + dwi = chu,vi + dhu,wi
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4 Orthogonality

4.1 Orthogonal and Orthonormal Bases

We’ve already seen that in an inner product space V , two vectors x and y are said
to be orthogonal if hx,yi = 0.

Fact: If v1, . . . ,vn are nonzero vectors that are “mutually orthogonal”, mean-
ing hvi,vji = 0 if i 6= j, then v1, . . . ,vn are linearly independent.

Definition: Suppose v1, . . . ,vn are nonzero vectors that are mutually orthog-
onal. If additionally kvik = 1, we say v1, . . . ,vn are orthonormal.

Definition:

• If v1, . . . ,vn are mutually orthogonal vectors that are also a basis for V (so
dimV = n), we say they are an orthogonal basis.

• If v1, . . . ,vn are orthonormal and a basis for V , we say they are an or-

thonormal basis.

Example. In Rn equipped with the standard dot product, an orthonormal basis
is the standard basis:

e1 =

0

BBBBBBB@

1
0
0
...
0
0

1

CCCCCCCA

, e2 =

0

BBBBBBB@

0
1
0
...
0
0

1

CCCCCCCA

, en =

0

BBBBBBB@

0
0
0
...
0
1

1

CCCCCCCA
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Fact: Suppose that v1, . . . ,vn are nonzero, mutually orthogonal (resp. or-
thonormal) vectors. Then v1, . . . ,vn form an orthogonal (resp. orthonormal)
basis for their span W = span{v1, . . . ,vn}.

Fact: Suppose that v1, . . . ,vn is orthogonal basis. Then

v1

kv1k
, . . . ,

vn

kvnk
form an orthonormal basis.

Example. Explain why vectors x = (1 1 0)T , y = (1 �1 1)T , and z =
(1 �1 � 2)T form an orthogonal basis in R3? Turn them into an orthonormal
basis.
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§ Computations in Orthogonal Bases

What are the advantages of orthogonal (orthonormal) bases?
It is simple to find the coordinates of a vector in the orthogonal (orthonormal)

basis. However, in general this is not so easy.

Fact: If v1, . . . ,vn is an orthogonal basis in any inner product space V , then
for any vector v 2 V we have

v = a1v1 + · · · + anvn,

where

ai =
hv,vii
kvik2

, i = 1, · · · , n.

Moreover, we have

kvk2 = a21kv1k2 + · · · a2nkvnk2 =
nX

i=1

✓
hv,vii
kvik

◆2

.

[To see this:]
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Example. Consider the orthogonal basis x = (1 1 0)T , y = (1 �1 1)T , and
z = (1 �1 � 2)T of R3. Write v = (1 2 3)T as the linear combination of x, y
and z.

Example.

(1) The basis 1, x, x2 do NOT form an orthogonal basis.

(2)

p1(x) = 1, p2(x) = x� 1

2
, p3(x) = x2 � x +

1

6
.

is an orthogonal basis of P (2).

(3) Write p(x) = x2 + x + 1 in terms of the basis p1, p2, p3 in (2).
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