Lecture 21: Quick review from previous lecture

- The Gram matrix is
$K=\left(\begin{array}{rrrr}\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{1}, \mathbf{v}_{n}\right\rangle \\ \left\langle\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{2}, \mathbf{v}_{n}\right\rangle \\ \vdots & \vdots & \ddots & \vdots \\ \left\langle\mathbf{v}_{n}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{n}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle\end{array}\right)_{n \times \mathbf{n}}$
$K>0$. positive definite
(1) $K=K T$
(2) $x^{\top} K x>0$, for all $x \neq 0$.

$$
\left.\left\langle v_{i}, v_{j}\right\rangle=v_{i}^{\top} C v_{j}, C\right\rangle 0
$$

- In \mathbb{R}^{n}, Gram matrices are always positive semidefinite
- they are positive definite precisely when the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Today we will discuss "Orthogonal(Orthonormal) bases"

Lecture video can be found in Canvas "Media Gallery"
3.6 Complex Vector Spaces

To finish Chapter 3: let's briefly discuss complex vector spaces and complex inner products.

Recall that a complex number as an expression of the form

$$
z=x+i y, \quad x, y \in \mathbb{R} . \quad \begin{aligned}
i=\sqrt{-1} . \quad i^{2} & =(\sqrt{-1})^{2} \\
& =-1 .
\end{aligned}
$$

The complex conjugate of $z=x \pm i y$ is

$$
\bar{z}=x-i y .
$$

Thus,

$$
|z|^{2}=z \bar{z}
$$

- Everything we have done in Chapter 1 with \mathbb{R}^{n} and real-valued scalars works in \mathbb{C}^{n} with complex-valued scalars.
- In particular, Gaussian elimination works exactly the same way if the numbers are in \mathbb{C} instead of \mathbb{R}.

$$
\begin{aligned}
z & =1+i \cdot(1+\sqrt{-1}) . \\
\bar{z} & =1-i . \\
|z|^{2} & =z \bar{z}
\end{aligned}=(1+i)(1-i) .
$$

In general, $z=x+i y$.

$$
|z|^{2}=x^{2}+y^{2}, \quad|z|=\sqrt{x^{2}+y^{2}} .
$$

\S Inner product on \mathbb{C}^{n} :

$$
\langle\mathbf{w}, \mathbf{z}\rangle=\sum_{i=1}^{n} w \widehat{z_{i}}
$$

- This way, $\langle\mathbf{z}, \mathbf{z}\rangle=\sum_{i=1}^{n} z_{i} \overline{z_{i}}=\sum_{i=1}^{n}\left|z_{i}\right|^{2}$, which is positive if $\mathbf{z} \neq 0$.
- Note that $\langle\mathbf{w}, \mathbf{z}\rangle$ is symmetric; rather it is conjugate-symmetric:

$$
\langle\mathbf{w}, \mathbf{z}\rangle=\langle\mathbf{z}, \mathbf{w}\rangle
$$

- For $c, d \in \mathbb{C}$,

$$
\begin{aligned}
& \langle c \mathbf{u}+d \mathbf{v}, \mathbf{w}\rangle=\underset{\sim}{c}\langle\mathbf{u}, \mathbf{w}\rangle+\underset{\sim}{d}\langle\mathbf{v}, \mathbf{w}\rangle \\
& \langle\mathbf{u}, c \mathbf{v}+d \mathbf{w}\rangle=\bar{c}\langle\mathbf{c}, \mathbf{v}\rangle+\bar{d}\langle\mathbf{u}, \mathbf{w}\rangle
\end{aligned}
$$

$$
\|v\|^{2}=\langle v, v\rangle \geq 0 ;\langle v, v\rangle=0 \Longleftrightarrow v=0
$$

$E X: \quad v=(1+i, 2 i,-3)^{\top}$. Find $\|v\|$.

$$
\begin{aligned}
\|v\| & =\sqrt{\underbrace{|1+i|^{2}+|2 i|^{2}+|-3|^{2}}} \quad \begin{aligned}
\| x+\left.i y\right|^{2} & =x^{2}+y^{2} \\
& =\sqrt{2+4+9} \quad|2 i|^{2}
\end{aligned}=0^{2}+2^{2} \\
& =4 . \\
& =\sqrt{15} .
\end{aligned}
$$

4 Orthogonality
4.1 Orthogonal and Orthonormal Bases

We've already seen that in an inner product space V, two vectors \mathbf{x} and \mathbf{y} are said to be orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
Fact: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are nonzero vectors that are "mutually orthogonal", meaning $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0$ if $i \neq j$, then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.
[To see this]: Consider $c_{1} V_{1}+\cdots+c_{n} V_{n}=0$.
We want to show $C_{1}=0, \ldots, C_{n}=0$.

$$
\begin{gathered}
\left\langle c_{1} v_{1}+\cdots+c_{n} v_{n} v_{v}\right\rangle=\left\langle 0, v_{1}\right\rangle . \\
c_{1}\left\langle v_{1}, v_{1}\right\rangle+c_{2}\left\langle v_{2}, v_{1}\right\rangle+\cdots+c_{n}\left\langle v_{y}, v_{1}^{0}\right\rangle=0 . \\
c_{1}\left\langle v_{1}, v_{1}\right\rangle=0
\end{gathered}
$$

$$
\begin{aligned}
& c_{1}\left\langle v_{1}, v_{1}\right\rangle=0 \\
& c_{1}\left\|v_{1}\right\|^{2}=0 \quad c_{1}=0 . \quad \text { similarly, we can get } \\
& c_{3}=0_{1 \ldots n}, c_{n}=
\end{aligned}
$$

Definition: Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are nonzero vectors that are mutually ort hogonal. If additionally $\left\|\mathbf{v}_{i}\right\|=1$, we say $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are orthonormal.

Definition:

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are mutually orthogonal vectors that are also a basis for V (so $\operatorname{dim} V=n$), we say they are an orthogonal basis.
- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are Orthonormal and a ªsis for V, we say they are an orthonormal basis. ($\left\|v_{1}\right\|=\cdots=\left\|v_{n}\right\|=1$).
Example. In \mathbb{R}^{n} equipped with the standard dot product, an orthonormal basis is the standard basis:

$$
\underline{\mathbf{e}_{1}}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \underline{\mathbf{e}_{2}}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \ldots, \underline{\mathbf{e}_{n}}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Fact: Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are nonzero, mutually orthogonal (resp. orthonormal) vectors. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form an orthogonal (resp. orthonormal) basis for their span $W=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

$\left\{v_{1}, \ldots, v_{n}\right\}$ orthogonal (orthonormal) basis for W.

Fact: Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is orthogonal basis. Then

Example. Explain why vectors $\mathbf{x}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}, \mathbf{y}=\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)^{T}$, and $\mathbf{z}=$ $\left(\begin{array}{ll}1 & -1\end{array}-2\right)^{T}$ form an orthogonal basis in \mathbb{R}^{3} ? Turn them into an orthonormal basis.
x, y, z are mutually orthogonal. Fart $\{x, y, z\}$ linear

$$
\begin{aligned}
& \langle x, y\rangle=\left\langle\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\rangle=0 . \\
& \langle x, z\rangle=\left\langle\binom{ 1}{b},\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)\right\rangle=0 . \\
& \langle y, z\rangle=0
\end{aligned}
$$

Thus, $\{x, y, z\}$ is an orthogonal boris in \mathbb{R}^{3}.

$$
\left\{\frac{x}{\|x\|}, \frac{y}{\|y\|}, \frac{z}{\|z\|}\right\}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)\right\}
$$

\S Computations in Orthogonal Bases
What are the advantages of orthogonal (orthonormal) bases?
It is simple to find the coordinates of a vector in the orthogonal (orthonormal) basis. However, in general this is not so easy.

Fact: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis in any inner product space V, then for any vector $\mathbf{v} \in V$ we have
(1)

$$
\mathbf{v}=\underline{a_{1}} \mathbf{v}_{1}+\cdots+\underline{a_{n}} \mathbf{v}_{n},
$$

where

$$
a_{i}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}, i=1, \cdots, n .
$$

Moreover, we have
(2) $\|\mathbf{v}\|^{2}=a_{1}^{2}\left\|\mathbf{v}_{1}\right\|^{2}+\cdots a_{n}^{2}\left\|\mathbf{v}_{n}\right\|^{2}=\sum_{i=1}^{n}\left(\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|}\right)^{2}$.
[To see this:' ${ }^{\prime}$ ' For any $s \in V$, we can write

$$
\begin{aligned}
& v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n} \\
&\left\langle v, v_{1}\right\rangle=\left\langle a_{1} v_{1}+a_{2} v_{2}^{r}+\ldots+a_{n}^{v} v_{n}, v_{1}\right\rangle \\
&=a_{1}\left\langle v_{1}, v_{1}\right\rangle+a_{2}\left\langle v, v_{1}^{0}\right\rangle+\cdots+a_{2}\left\langle v_{1} v_{1}\right\rangle
\end{aligned}
$$

Thus,

$$
\left\langle v, v_{1}\right\rangle=a_{1}\left\|v_{1}\right\|^{2}
$$

$\Rightarrow \quad a_{1}=\frac{\left\langle v, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} \quad a_{2}=\frac{\left\langle v, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}}, \ldots$,

$$
a_{n}=\frac{\left\langle v_{1} v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}} \ldots \nRightarrow \quad \begin{aligned}
& *\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { is coordinate } \\
& \text { of vector } v \text { in basis }\left\{\text { Ex ercinge. } 202 v_{n}\right\} \text {. }
\end{aligned}
$$

Example. Consider the orthogonal basis $\mathbf{x}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}, \mathbf{y}=\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)^{T}$, and $\mathbf{z}=\left(\begin{array}{ll}1 & -1\end{array}-2\right)^{T}$ of \mathbb{R}^{3}. Write $\mathbf{v}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T}$ as the linear combination of \mathbf{x}, \mathbf{y} and \mathbf{z}.

$$
\begin{aligned}
& v=\frac{\langle v, x\rangle}{\|x\|^{2}} x+\frac{\langle v, y\rangle}{\|y\|^{2}} y+\frac{\langle v, z\rangle}{\|z\|^{2}} z . \\
& \langle v, x\rangle=\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=1+2=3 \\
& \|x\|^{2}=\left\langle\left(\begin{array}{l}
1 \\
0
\end{array} 1,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=2 .\right. \\
& \langle v, y\rangle=\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\rangle=1-2+3=2 \text {. } \\
& \|y\|^{2}=\left\langle\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\rangle=3 \text {. } \\
& \langle u, z\rangle=-7 \text {, } \\
& \|z\|^{2}=6 \text {. Thus, } v=\frac{3}{2} x+\frac{2}{3} y-\frac{7}{6} z
\end{aligned}
$$

Example.
(1) The basis $1, x, x^{2}$ do NOT form an orthogonal basis. for $P^{(2)}([0,1])$

$$
\begin{aligned}
& \langle 1, x\rangle=\int_{0}^{1} 1 x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2} \neq 0 . \\
& \left\langle x, x^{2}\right\rangle=\int_{0}^{1} x x^{2} d x=\int_{0}^{1} x^{3} d x=\frac{1}{4} \neq 0
\end{aligned}
$$

(2) \downarrow continue Next Monday.

$$
p_{1}(x)=1, \quad p_{2}(x)=x-\frac{1}{2}, \quad p_{3}(x)=x^{2}-x+\frac{1}{6} .
$$

is an orthogonal basis of $\mathcal{P}^{(2)}([0,1])$
TexłLWrite $p(x)=x^{2}+x+1$ in terms of the basis p_{1}, p_{2}, p_{3} in (2).

$$
(P .190)
$$

