Lecture 22: Quick review from previous lecture

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are nonzero vectors that are mutually orthogonal, meaning $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0$ if $i \neq j$,

$$
\text { mutually orthogonal } \Rightarrow \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \text { are linearly independent }
$$

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for V and orthogonal (orthonormal), we call they are orthogonal (orthonormal) basis.
$\left\|v_{i}\right\|=1,1 \leq i \leq n$.
[Property:]
- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an "orthogonal basis' in any inner product space V, then for any vector $\mathbf{v} \in V$ we have

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}
$$

where

$$
a_{i}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}, i=1, \cdots, n
$$

Today we will discuss examples for "Orthogonal(Orthonormal) bases" and then turn to the Gram-Schmidt process.

- Lecture will be recorded -

Lecture video can be found in Canvas "Media Gallery"

Example. Consider the orthogonal basis $\mathbf{x}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}, \mathbf{y}=\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)^{T}$, and $\mathbf{z}=\left(\begin{array}{ll}1 & -1\end{array}-2\right)^{T}$ of \mathbb{R}^{3}. Write $\mathbf{v}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T}$ as the linear combination of \mathbf{x}, \mathbf{y} and \mathbf{z}.

$$
\begin{aligned}
& V=\frac{\langle v, x\rangle}{\|x\|^{2}} x+\frac{\langle v, y\rangle}{\|y\|^{2}} y+\frac{\langle v, z\rangle}{\|z\|^{2}} z . \\
& \langle v, x\rangle=\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=1+2=3 \\
& \|x\|^{2}=\left\langle\left(\begin{array}{l}
1 \\
0
\end{array} 1,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=2 .\right. \\
& \langle v, y\rangle=\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\rangle=1-2+3=2 \text {. } \\
& \|y\|^{2}=\left\langle\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\rangle=3 \text {. } \\
& \langle U, Z\rangle=-7 \text {, } \\
& \|z\|^{2}=6 \text {. Thus, } v=\frac{3}{2} x+\frac{2}{3} y-\frac{7}{6} z
\end{aligned}
$$

Example.
(1) The basis $1, x, x^{2}$ do NOT form an orthogonal basis. for $P^{(2)}([0,1])$

$$
\begin{aligned}
& \langle 1, x\rangle=\int_{0}^{1} 1 x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2} \neq 0 \\
& \left\langle x, x^{2}\right\rangle=\int_{0}^{1} x x^{2} d x=\int_{0}^{1} x^{3} d x=\frac{1}{4} \neq 0
\end{aligned}
$$

$$
\frac{个^{3} / 20}{(2)^{3} 3 / 23}
$$

$$
p_{1}(x)=1, \quad p_{2}(x)=x-\frac{1}{2}, \quad p_{3}(x)=x^{2}-x+\frac{1}{6} .
$$

is an orthogonal basis of $\mathcal{P}^{(2)}([0,1])$
(3) Write $p(x)=x^{2}+x+1$ in terms of the basis p_{1}, p_{2}, p_{3} in (2).
(2)

$$
\begin{aligned}
\left\langle P_{1}, P_{2}\right\rangle=\int_{0}^{1} 1\left(x-\frac{1}{2}\right) d x & =\frac{1}{2} x^{2}-\left.\frac{1}{2} x\right|_{0} ^{1}=0 \\
\left\langle P_{1}, P_{3}\right\rangle=\int_{0}^{1} 1\left(x^{2}-x+\frac{1}{6}\right) d x & =\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\left.\frac{1}{6} x\right|_{0} ^{1} \\
& =\frac{1}{3}-\frac{1}{2}+\frac{5}{6} \frac{2 \pi 203+1}{6}
\end{aligned}
$$

[Example Continue]

$$
\begin{aligned}
& \text { Continue] } \\
& \left\langle p_{2}, p_{3}\right\rangle=\int_{0}^{1}\left(x-\frac{1}{2}\right)\left(x^{2}-x+\frac{1}{6}\right) d x=\ldots=0 ~
\end{aligned}
$$

So, $\left\{P_{1}, P_{2}, P_{3}\right\}$ is mutually orthogonal, by Fact, $\left\{P_{1}, P_{2}, P_{3}\right\}$ is linearly independent.
Thus, $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a basis and moreover, it is "orthogonal" basis.
(3). $p(x)=\frac{\left\langle p_{1}, p_{1}\right\rangle}{\left\|P_{1}\right\|^{2}} C_{1} p_{1}+\frac{\left\langle p_{1} p_{2}\right\rangle}{\left\|p_{2}\right\|^{2}} P_{2}+\frac{\left\langle p_{2} P_{3}\right\rangle}{\frac{\left\|p_{2}\right\|^{2}}{C_{2}}} P_{3}$
(1)

$$
\begin{aligned}
& \left\langle p, p_{1}\right\rangle=\int_{0}^{1}\left(x^{2}+x+1\right) 1 d x=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\left.x\right|_{0} ^{1} \\
& =\frac{1}{3}+\frac{1}{2}+1 \\
& =\frac{2}{6}+\frac{3}{6}+\frac{6}{6} \\
& \left\|P_{1}\right\|^{2}=\left\langle P_{1}, P_{1}\right\rangle=\int_{0}^{1} 1=1=1=\sqrt{\frac{11}{6}} . \\
& C_{1}=\frac{11}{6} / 1=11 / 6 . \not ⿻ \neq \\
& \left\langle p, p_{2}\right\rangle=\int_{0}^{1}\left(x^{2}+x+1\right)\left(x-\frac{1}{2}\right) d x= \\
& \left\|P_{2}\right\|^{2}=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\frac{1}{12} \text {. } \\
& C_{2}=\frac{\left\langle P_{1} P_{2}\right\rangle}{\left\|P_{2}\right\|^{2}}=Z .
\end{aligned}
$$

(3)
(3)

$$
\begin{aligned}
\left\langle P, P_{3}\right\rangle & =\int_{0}^{1}\left(x^{2}+x+1\right)\left(x^{2}-x+\frac{1}{6}\right) d x \\
\left\|P_{3}\right\|^{2} & =1 / 180
\end{aligned}
$$

4.2 The Gram-Schmidt Process

Q: How can we construct the orthogonal (or orthonormal) bases?
This can be done by the algorithm, known as the Gram-Schmidt process.
\S Given 2 two vectors \mathbf{v}, w
$*\langle\omega, v\rangle=\|w\|\|v\| \cos \theta$.
Let \mathbf{v} and \mathbf{w} be two vectors, and $\mathbf{v} \neq \mathbf{0}$. How do we make up an vector orthogonal to \mathbf{v} so that it forms an orthogonal set that spans the same subspace as $\operatorname{span}\{\mathbf{v}, \mathbf{w}\}$?

$$
\widetilde{v}=w-\frac{\langle w, v\rangle}{\|v\|^{2}} v .
$$

$=\| \min ^{\prime} \left\lvert\,\left(\frac{\langle\omega, v\rangle}{\|v\|\|v\|}\right)\right.$

$$
=\frac{\langle w, v\rangle}{\|v\|}
$$

Thus, \tilde{v} is oothogond to V?

$$
\begin{aligned}
\Gamma\langle\tilde{v}, v\rangle & =\left\langle w-\frac{\langle w, v\rangle}{\|v\|^{2}} v, v\right\rangle \\
& =\langle w, v\rangle-\frac{\langle w, v\rangle}{\|w\|^{2}}\langle\psi v\rangle \\
& =0 .
\end{aligned}
$$

We call $\frac{\langle w, v\rangle}{\|v\|^{2}} v$, the u thogonal projection of § Given 2 orthogonal vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, another vector \mathbf{w} How do we make up an vector \mathbf{v}_{3} orthogonal to both $\mathbf{v}_{1}, \mathbf{v}_{2}$? In particular, the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ spans the same subspace as $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{w}\right\}$?

Orthogonal projection of ω

$$
\text { is } v_{3}=\underbrace{}_{w-\left(\frac{\left\langle w, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle w, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}\right.} .
$$

Thus. $\left\{U_{1}, V_{2}, V_{3}\right\}$ is uthogonal

$$
\operatorname{span}_{4}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{\text {Spring }}, v_{2020}, w\right\}
$$

§ In general
If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are orthogonal vectors, then for any vector \mathbf{w},

$$
\underline{\sum_{i=1}^{n} \frac{\left\langle\mathbf{w}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}} \mathbf{v}_{i}}
$$

is the vector nearest to \mathbf{w} in $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{n}\right\}$.
This is called the orthogonal projection of \mathbf{w} onto $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
Furthermore, the vector

$$
\mathbf{w}-\left(\sum_{i=1}^{n} \frac{\left\langle\mathbf{w}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}} \mathbf{v}_{i}\right)
$$

orthogonal o each of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
\S The Gram-Schmidt process
We start with any basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ or the inner product space V.
We then orthogonalize each one to the preceding ones, building up an "orthogonal basis" as we go.

$$
\begin{aligned}
& v_{1}=w_{1} \\
& v_{2}=w_{2}-\frac{\left\langle w_{2}, V_{1}\right\rangle}{\left\|V_{1}\right\|^{2}} v_{1} \\
& v_{3}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle w_{2}, v_{2}\right\rangle_{2}}{\left\|v_{2}\right\|^{2}} \\
& \vdots \\
& V_{n}=w_{n}-\frac{\left\langle w_{n}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\cdots-\frac{\left\langle w_{n}, v_{n-1}\right\rangle_{n-1}}{\left\|v_{n-1}\right\|^{2}} . \\
& T h u s,\left\{v_{1}, \ldots, v_{n}\right\} \text { is orthogonal. }
\end{aligned}
$$

Example. Consider the vectors $\mathbf{w}_{1}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}, \mathbf{w}_{2}=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)^{T}$, and $\mathbf{w}_{3}=$ $\left.\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$, that form a basis of \mathbb{R}^{3}. To construct an orthogonal basis and an orthonormal basis using the Gram-Schmidt process.

$$
\left\{\frac{v_{1}}{\| v_{11}}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\| v_{31}}\right\} w_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right\}
$$

is an orthonormal basis

$$
\begin{aligned}
& V_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{11}\right\|^{2}} v_{1} \\
& \text { Fr }\left\|v_{1}\right\|^{2}=\left\langle\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=2 \\
& \left\langle\omega_{2}, v_{1}\right\rangle=\left\langle\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=1 \\
& \begin{array}{l}
U_{2}=W_{2}-\frac{1}{2} U_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
\eta \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right) . \\
U_{3}=W_{3}-\frac{\left\langle W_{3}, V_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2} \mid\right\|^{2}} v_{2}
\end{array} \\
& \sqrt{\Gamma}\left\langle w_{3}, v_{1}\right\rangle=\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=1 \\
& \left\langle w_{3}, v_{2}\right\rangle=\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right)\right\rangle=\frac{1}{2} . \\
& \left\|v_{2}\right\|^{2}=3 / 2 \text {. } \\
& U_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{\frac{1}{2}}{\frac{3}{2}}\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
2 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right) \text {. Thus, }\left[v_{1}, v_{2_{\text {spmg }} v_{2} d_{20}} \quad\right. \text { rn urthoqual }
\end{aligned}
$$

Example. We know that $1, x$, and x^{2} form a basis for $\mathcal{P}^{(2)}([0,1])$, the space of polynomials of degree $\leq 2=[0,1]$. Let's turn them into an orthonormal basis, with respect to the usual L^{2} inner product.

$$
\begin{aligned}
& q_{0}=1 \\
& q_{1}(x)=x-\frac{\left\langle x, q_{0}\right\rangle}{\| q_{01} 1^{2}} q_{0} \quad\left(=x-\frac{1}{2}\right) \\
& q_{2}(x)=x^{2}-\frac{\left\langle x^{2}, q_{0}\right\rangle}{\|\left(q_{0} 1^{2}\right.} q_{0}-\frac{\left\langle x^{2}, q_{1}\right\rangle}{\|\left(q_{1} \|^{2}\right.} q_{1}\left(=x^{2}-x+\frac{1}{6}\right)
\end{aligned}
$$ Twill continue on $3 / 25$ ل

