Lecture 23: Quick review from previous lecture

- The basis $\left\{1, x, x^{2}\right\}$ for $\mathcal{P}^{(2)}$ do NOT form an orthogonal basis.
- (Gram-Schmidt Process)
(50,1$]$)
Suppose that $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ are linearly independent.
Turn $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ to orthogonal vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{a}_{1} \\
& \mathbf{v}_{2}=\mathbf{a}_{2}-\frac{\left\langle\mathbf{a}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{a}_{3}-\frac{\left\langle\mathbf{a}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{a}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}
\end{aligned}
$$

Thar, $\left\langle\sqrt{2}, v_{1}\right\rangle=0$.

$$
\mathbf{v}_{n}=\mathbf{a}_{n}-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\|\mathbf{v}_{n-1}\right\|^{2}} \mathbf{v}_{n-1}
$$

Today we will discuss examples for the Gram-Schmidt process and introduce the Orthogonal Matrices.

- Lecture will be recorded -

Lecture video can be found in Canvas "Media Gallery"

Example. We know that 1, x.) and x^{2} form a basis for $\mathcal{P}^{(2)}([0,1])$, the space of polynomials of degree ≤ 2 on $[0,1]$. Let's turn them into an orthonormal basis, with respect to the usual L^{2} inner product.

By Gram-Schmidt process, he will turn $\left[1, x, x^{2}\right]$ into orthogonal basis.

$$
\begin{aligned}
& \left\{\begin{array}{l}
p_{1}=1 \\
P_{2}=x-\frac{\left\langle x, P_{1}\right\rangle}{\left\|P_{1}\right\|^{2}} p_{1}=\left\lvert\, x-\frac{1}{2}\right. \\
p_{3}=x^{2}-\frac{\left\langle x^{2} P_{1}\right\rangle^{-1 / 3}}{\left\|P_{1}\right\|^{2}=1} p_{1}-\frac{\left\langle x^{2}, p_{2}\right\rangle^{1 / 2 / 2}}{\left\|P_{2}\right\|_{2}^{2}}=x^{2}=x^{2}-\frac{1}{3}-\left(x-\frac{1}{2}\right) \\
\left\langle x, P_{1}\right\rangle=x^{2}-x+\frac{1}{6}
\end{array}\right.
\end{aligned}
$$

(1) $\left\langle x, p_{1}\right\rangle=\int_{0}^{1} x \cdot 1 d x=\underline{1} 2$
(2) $\left\|P_{1}\right\|^{2}=\left\langle p_{1}, p_{1}\right\rangle=\int_{0}^{1} \overline{1 d x}=1$.
(3) $\left\langle x^{2}, p_{1}\right\rangle=\int_{0}^{1} x^{2} \cdot 1 d x=\frac{1}{3}$.
(4) $\left\|P_{2}\right\|^{2}=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=1 / 12$.
(5.) $\left\langle x^{2}, p_{2}\right\rangle=\int_{0}^{1} x^{2}\left(x-\frac{1}{2}\right) d x=1 / 12$.

Thus, we have orthogonal basis $\left\{P_{1}, P_{2}, P_{3}\right\}$.
To get $O N B$, we do

$$
\begin{aligned}
& \left\{\frac{P_{1}}{\left\|P_{1}\right\|}, \frac{P_{2}}{\left\|P_{2}\right\|}, \frac{P_{3}}{\left\|P_{3}\right\|}\right\} \\
& =\left\{1, \frac{x-\frac{1}{2}}{\frac{1}{\sqrt{12}}}, \frac{x^{2}-x+\frac{1}{6}}{\| P_{3} 11}\right\} \\
& \sqrt{12}\left(x-\frac{1}{2}\right) \\
& 11 P_{3} \| \text {. }
\end{aligned}
$$

Example. Let the subspace $W \subset \mathbb{R}^{4}$ consist of all vectors orthogonal to $\mathbf{a}=$ $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$. Find an orthonormal basis for W.

$$
\begin{gathered}
\text { 1) } x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
x \cdot a=0 \Rightarrow x_{1}+x_{2}+x_{3}+x_{4}=0
\end{gathered}
$$

tree variables.

$$
\begin{aligned}
& \Rightarrow x_{1}=-x_{2}-x_{3}-x_{4} \\
& w=\left\{\begin{array}{l}
x \\
w
\end{array}\right) \quad \mathbb{R}^{4}\left(\begin{array}{c}
-x_{2}-x_{3}-x_{4} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \\
& x_{2}=1, x_{3}=x_{4}=0 \quad ; \quad x_{3}=1, \quad x_{2}=x_{4}=0 \quad ; \quad x_{4}=1, x_{2}=x_{3}=0 \\
& \omega_{1}=\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right) \quad ; \quad w_{2}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) ; \quad w_{3}=\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Thus, $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a basis for W. $\left(W=\operatorname{span}\left\{w_{1}, w_{2}, w_{3}\right\}\right)$.
2) To find $O N B$ bass for W.

First, we use Gram Schmidt to find orthogonal basis

$$
\begin{aligned}
& V_{1}=w_{1}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \\
& V_{2}=W_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=\left(\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1 \\
0
\end{array}\right) \\
& V_{3}=W_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\operatorname{Sin}_{2} v_{2} \eta^{290^{2}}} v_{2}
\end{aligned}
$$

$$
=\left(\begin{array}{c}
-1 / 3 \\
-1 / 3 \\
-1 / 3 \\
1
\end{array}\right) \text {. }
$$

Next, $O N B$ for ω is

$$
\begin{aligned}
& \rightarrow\left\{\frac{v_{1}}{\left\|v_{1}\right\|}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\left\|v_{3}\right\|}\right\} \\
& \underline{E x}=T_{0} \text { find explicit vectors. } \#
\end{aligned}
$$

4.3 Orthogonal Matrices

Definition: A square matrix A is called an orthogonal matrix if it satisfies

$$
A^{T} A=A A^{T}=I
$$

Recall = The inverse
Some Properties about an orthogonal matrix A :
of A :

- The inverse of A is

$$
A^{T}=A^{-1}
$$

$$
\begin{aligned}
& \underline{X} A=A \underline{Z}=I . \\
& \text { left inverse ot } A \text { ityintincera. } A \text {. }
\end{aligned}
$$

- It is easy to solve the system $A \underset{=}{\mathbf{x}}=\mathbf{v}$.
[Since $A^{T} A=I$, we immediately have the solution $\mathbf{x}=\underline{A^{-1} \mathbf{v}}=A^{T}$ 少.
Thus there is no need to apply Gaussian elimination to solve the system.]
- If A is orthogonal, then $\operatorname{det}(A)= \pm 1$.

$$
\begin{aligned}
A^{\top} A=I & \Rightarrow \operatorname{det}\left(A^{\top} A\right)=\operatorname{det} I \\
& \Rightarrow\left(\operatorname{det} A^{\top}\right)(\operatorname{det} A)=1 \\
& \Rightarrow \operatorname{det} A \operatorname{det} A=1 \Rightarrow \operatorname{det} A= \pm 1
\end{aligned}
$$

Fact 1: A square matrix A is an orthogonal matrix if and $\xlongequal[\overline{\circ n l y}]{\Longrightarrow}$ if its columns form an orthonormal basis on \mathbb{R}^{n} with respect to the Euclidean dot product. (ONE)
[To see this:] $A=\left[\begin{array}{llll}\sqrt{1}_{1} & \sqrt{2} & \cdots & v_{n}\end{array}\right]_{n \times n}$.
$(\Rightarrow) A$ is orthogonal.

$$
\begin{aligned}
& A^{\top} A=I . \Rightarrow\left[\begin{array}{c}
v_{1}^{\top} \\
v_{2} 7 \\
\vdots \\
v_{n} 7
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]=\left(\begin{array}{ccc}
1 & & 0 \\
& 1 & \\
& \ddots & \\
0 & & 1
\end{array}\right) . \\
& \Rightarrow\left[\begin{array}{cccc}
v_{1}^{\top} v_{1} & v_{1}^{\top} v_{2} & \cdots & v_{1}^{\top} v_{n} \\
v_{2}^{\top} v_{1} & v_{2}^{\top} v_{2} & \cdots & v_{2}^{\top} v_{n} \\
& \cdots & \cdots & \\
& v_{n}^{\top} v_{n}
\end{array}\right]=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right) .
\end{aligned}
$$

 Hence $\left\{v_{1}, \ldots, v_{n}\right\} \circ \sim B B_{i} v_{i}, 1 \varepsilon i \leq n$.

- If A is orthogonal, so is A^{T} (since $\left(A^{T}\right)^{T}=A$). This implies that the column vectors of A^{T} (they are row vectors of A) also from an orthonormal basis of $\mathbb{R}^{n} . A$ is orthogonal $\Rightarrow A^{\top}$ is orthaginal Fact ONB.

Example. The matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \Rightarrow \text { rows of } A^{\text {T }} \text { BOMB. }
$$

is orthogonal.
[To see this:] check $A^{\top} A=A A^{\top}=I_{2}$.

$$
\left.A^{\top} A=\left(\begin{array}{cc}
\frac{\cos \theta}{} \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)_{2 \times 2}
$$

since $\cos ^{2} \theta+\sin ^{2} \theta=1$.

Similarly,

$$
B=\left(\left(\begin{array} { c }
{ \operatorname { c o s } \theta } \\
{ \operatorname { s i n } \theta }
\end{array} \left(\begin{array}{c}
\binom{\sin \theta}{-\cos \theta}
\end{array}\right.\right.\right.
$$

is also orthogonal. (Exercise: $B^{\top} B=B B^{\top}=I_{2}$).
[*** One can easily see that the rows (columns) of the matrix form an orthonormal basis for $\left.\mathbb{R}^{2}.\right]\left\{(\cos \theta, \sin \theta)^{\top},(\sin \theta,-\cos \theta)^{\top}\right\}$ is
$\partial N B$ for \mathbb{R}^{2}.

Fact 2: If A, and B are orthogonal matrices, then $A B$ is orthogonal too.
[To see this:] $(A B)^{\top}(A B)=B^{\top}\left(A^{\top} A B=B^{\top} I B=B^{\top} B=I\right.$.
similarly,
$\quad(A B)(A B)^{\top}=I$.

- If A is orthogonal, then the matrix A preserve length in the sense that

$$
\|A \mathbf{x}\|=\xlongequal[=]{\|\mathbf{x}\|} \quad \text { for all } x \in \mathbb{R}^{n} \quad \text { (Homework problem) }
$$

