Lecture 23: Quick review from previous lecture

- The basis $\{1, x, x^2\}$ for $\mathcal{P}^{(2)}_{\checkmark}$ do NOT form an orthogonal basis.
- (Gram-Schmidt Process) ((\mathbf{G}, \mathbf{n}) Suppose that $\mathbf{a}_1, \dots, \mathbf{a}_n$ are linearly independent.

Turn
$$\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$$
 to orthogonal vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:
 $\mathbf{v}_{1} = \mathbf{a}_{1}$
 $\mathbf{v}_{2} = \mathbf{a}_{2} - \frac{\langle \mathbf{a}_{2}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1}$
 $\mathbf{v}_{3} = \mathbf{a}_{3} - \frac{\langle \mathbf{a}_{3}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\langle \mathbf{a}_{3}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2}$
 $(\mathbf{a}_{2}, \mathbf{v}_{1})$
 $\mathbf{v}_{1} = \mathbf{v}_{1}$
 $\mathbf{v}_{n} = \mathbf{a}_{n} - \frac{\langle \mathbf{a}_{n}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \cdots - \frac{\langle \mathbf{a}_{n}, \mathbf{v}_{n-1} \rangle}{\|\mathbf{v}_{n-1}\|^{2}} \mathbf{v}_{n-1}$

Today we will discuss examples for the Gram-Schmidt process and introduce the Orthogonal Matrices.

- Lecture will be recorded -

Lecture video can be found in Canvas "Media Gallery"

MATH 4242-Week 10-2

Example. We know that 1, x, and x^2 form a basis for $\mathcal{P}^{(2)}([0,1])$, the space of polynomials of degree ≤ 2 on [0,1]. Let's turn them into an orthonormal basis, with respect to the usual L^2 inner product.

By Gran-Schmidt poess, ne will tam [1, x, x'] Mo orthogonal batis $\begin{cases} P_{1} = 1 \\ P_{2} = x - \langle x, P_{1} \rangle \\ P_{3} = x^{2} - \langle x^{2}, P_{1} \rangle \\ \|P_{1}\|_{2}^{2} \\ \|P_{1}\|_{2}^{2} \end{bmatrix} = \begin{pmatrix} x - \frac{1}{2} \\ x - \frac{1}{2} \\ \|P_{1}\|_{2}^{2} \\ \|P_{1}\|_{2}^{2} \end{bmatrix} \\ (1 < x, P_{1}) = \int_{0}^{1} x + 1 dx = \frac{1}{2} \end{cases}$ (2) $||P_{1}|^{2} = \langle P_{1}, P_{2} \rangle = \int_{0}^{1} |dx| = 1$ (3) $(x^2, p_1) = \int_0^1 x^2 \cdot 1 \, dx = \frac{1}{3}$ (4) $||P_{2}||^{2} = \int_{0}^{1} (x - \frac{1}{2})^{2} dx = 1/12$ (5) $\langle x^2, \beta_2 \rangle = \int_0^1 x^2 (x - \frac{1}{2}) dx = \frac{1}{12}$ Thus, we have orthogonal basis SP1, P2, P3]. 7º get ONB, ve do $\left\{ \frac{P_1}{\|P_1\|}, \frac{P_2}{\|P_2\|}, \frac{P_3}{\|P_2\|} \right\}$ $= \left\{ \begin{array}{ccc} 1 & , & \frac{x - \frac{1}{2}}{\sqrt{n}} & , & \frac{x^{2} - x + \frac{1}{2}}{1! P_{3} 1!} \right\}$ $\int_{12}^{11} (x - \frac{1}{2}) & & 11 \end{array}$ EX compute 11311.

Example. Let the subspace
$$W \subset \mathbb{R}^{4}$$
 consist of all vectors orthogonal to $\mathbf{a} = [1 \ 1 \ 1 \ 1]^{T}$. Find an orthonormal basis for W.
(ONB), post
(ONB), post
 $X = (x_{1}, x_{2}, x_{3}, x_{4})$, $(ONB), post$
 $X = (x_{1}, x_{2}, x_{3}, x_{4})$, $(ONB), post$
 $X = (x_{1}, x_{2}, x_{3}, x_{4})$, $(ONB), post$
 $X = (x_{1}, x_{2}, x_{3}, x_{4})$, $(ONB), post$
 $X = (x_{1}, x_{2}, x_{3}, x_{4})$, $(ONB), post$
 $Y = (x_{1}, x_{2}, x_{3}, x_{4})$, $(ONB), post$
 $W = \{X \in \mathbb{R}^{4}, (-x_{2} - x_{3} - x_{4}), (x_{2} - x_{3} - x_{4}), (x_{3} - x_{4} - x_{5} - x_{4}), (x_{4} - x_{4} - x_{5} - x_{4} - x_{4}), (x_{4} - x_{4} - x_{4} - x_{4} - x_{4} - x_{4}), (x_{4} - x_{4} - x_{4} - x_{4} - x_{4}), (x_{4} - x_{4} - x_{4} - x_{4} - x_{4} - x_{4} - x_{4} - x_{4}), (x_{4} - x_{4} -$

 $= \begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{pmatrix}.$ Next, ONB for W is

• If A is orthogonal, so is A^T (since $(A^T)^T = A$). This implies that the column vectors of A^T (they are row vectors of A) also from an orthonormal basis of

$$\mathbb{R}^{n}. \text{ A is orthogonal} \Longrightarrow A^{T} \text{ is orthogonal} \xrightarrow{\text{Example. The matrix}} A^{T} \text{ is orthogonal} \xrightarrow{\text{Example. The matrix}} A^{T} \text{ is one of } A$$

is orthogonal.

[To see this:] Chack
$$A^{T}A = AA^{T} = J_{2}$$
.
 $A^{T}A = \begin{pmatrix} \omega s \theta & s h \theta \\ -s h \theta & c o s \theta \end{pmatrix} \begin{pmatrix} | \cos \theta & -s h \theta \\ -s h \theta & c o s \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{2 \times 2}$.
 $she \quad \cos^{2}\theta + \sin^{2}\theta = 1$

Similarly,

$$B = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
is also orthogonal. (Exercise : B⁷B = BB⁷ = I₂).

[*** One can easily see that the rows (columns) of the matrix form an orthonormal basis for \mathbb{R}^2 .] {(($os\theta$, $sm\theta$)^T, ($sm\theta$, $-sos\theta$)^T) is ONB for \mathbb{R}^2 . Fact 2: If A and B are orthogonal matrices, then AB is orthogonal too.

$[\text{To see this:}] (AB)^{T} (AB) = B^{T} (A$

• If A is orthogonal, then the matrix A preserve length in the sense that

$$\|A\mathbf{x}\| = \|\mathbf{x}\| \quad \text{for all } x \in \mathbb{R}^n \quad (\text{Homework problem})$$