Lecture 24: Quick review from previous lecture

- A square matrix A is called an orthogonal matrix if it satisfies

$$
A^{T} A=A A^{T}=I .
$$

- If A is an orthogonal matrix, then its columns (rows) form an orthonormal basis on \mathbb{R}^{n} with respect to the Euclidean dot product.

Today we will discuss the QR factorization and orthogonal projections.

- Lecture will be recorded -

Lecture video can be found in Canvas "Media Gallery"

§ The QR Factorization

Revisit the Gram-Schmidt process:
Let $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$ be $n \times n$ nonsingular matrix, where \mathbf{a}_{j} is the $i^{t h}$ column vector of A. Thus, $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ are linearly independent.

Turn $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ to orthogonal vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:

Normalize $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ to get orthonormal vectors $\mathbf{q}_{1}, \cdots, \mathbf{q}_{n}$: That is,

$$
\mathbf{q}_{j}=\frac{\mathbf{v}_{j}}{\left\|\mathbf{v}_{j}\right\|} \underset{r_{j j}=\left\|\mathbf{v}_{j}\right\|}{\Rightarrow} r_{j j} \mathbf{q}_{j}=\mathbf{v}_{j}
$$

We can get

$$
v_{j}=\left\|v_{j}\right\| q_{j}
$$

$$
\begin{aligned}
r_{11} \mathbf{q}_{1} & =\mathbf{a}_{1} \\
r_{22} \mathbf{q}_{2} & =\mathbf{a}_{2}-\langle\overbrace{\left\langle\mathbf{a}_{2}, \mathbf{q}_{1}\right\rangle}^{\boldsymbol{\gamma}_{12}} \\
r_{33} \mathbf{q}_{1} & =\mathbf{a}_{3}-\langle\langle\underbrace{\left.\mathbf{a}_{3}, \mathbf{q}_{1}\right\rangle}_{\mathbf{r}_{13}}\rangle \mathbf{q}_{1}-\left\langle\frac{\mathbf{a}_{3}, \mathbf{q}_{2}}{\boldsymbol{\gamma}_{23}}\right\rangle \mathbf{q}_{2} \\
\vdots & \\
r_{n n} \mathbf{q}_{n} & =\mathbf{a}_{n}-\left\langle\frac{\left.\mathbf{a}_{n}, \mathbf{q}_{1}\right\rangle}{\boldsymbol{\gamma}_{1 n}}\right\rangle \mathbf{q}_{1}-\cdots-\left\langle\mathbf{a}_{\mathbf{r}_{n-1}, \mathbf{q}_{n-1}}\right\rangle \mathbf{q}_{n-1}
\end{aligned}
$$

$$
=\gamma_{j j} q_{j}
$$

$$
\begin{aligned}
& \operatorname{Gram}\left\{\begin{array}{l}
\left\|\left\|v_{1}\right\| q_{1} \quad\left\langle a_{2}, q_{1}\right\rangle q_{1}\right. \\
v_{1}=a_{1} \\
v_{2}=a_{2}-\left\langle a_{2}, \mathbf{v}_{1}\right\rangle
\end{array} \quad q_{j}=v_{j} /\left\|v_{j}\right\|\right. \\
& \text {-Schmidt }\left\{\begin{array}{l}
\frac{\mathbf{v}_{2}}{}=\mathbf{a}_{2}-\frac{\left\langle\mathbf{a}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\
\left\|v_{2}\right\| \bar{q}_{2}
\end{array},\left\langle a_{3}, q_{1}\right\rangle q_{1}\right. \\
& \left.\mathbf{v}_{3}=\mathbf{a}_{3}-\frac{\left\langle\mathbf{a}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{a}_{3}, \widetilde{\left.\mathbf{v}_{2}\right\rangle}\right.}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}\right\rangle=\left\langle a_{3}, q_{2}\right\rangle q_{2} . \\
& \text { ! } \\
& \mathbf{v}_{n}=\mathbf{a}_{n}-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\|\mathbf{v}_{n-1}\right\|^{2}} \mathbf{v}_{n-1}
\end{aligned}
$$

Let $r_{i j}=\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle$, then we further have

$$
\begin{aligned}
r_{11} \mathbf{q}_{1} & =\mathbf{a}_{1} \\
r_{22} \mathbf{q}_{2} & =\mathbf{a}_{2}-r_{12} \mathbf{q}_{1} \\
r_{33} \mathbf{q}_{3} & =\mathbf{a}_{3}-r_{13} \mathbf{q}_{1}-r_{23} \mathbf{q}_{2} \\
\vdots & \\
r_{n n} \mathbf{q}_{n} & =\mathbf{a}_{n}-r_{1 n} \mathbf{q}_{1}-\cdots-r_{n-1, n} \mathbf{q}_{n-1}
\end{aligned}
$$

We reach $\left\{a_{1}, \ldots, a_{n}\right\}$ l. independent $\stackrel{q_{i}=v_{i} / 1 w_{i} \|}{\Longrightarrow}\left\{q_{1}, \ldots, q_{n}\right\}$ ON

$$
\begin{aligned}
& \mathbf{a}_{1}=r_{11} \mathbf{q}_{1} \\
& \mathbf{a}_{2}=r_{12} \mathbf{q}_{1}+r_{22} \mathbf{q}_{2} \\
& \mathbf{a}_{3}=r_{13} \mathbf{q}_{1}+r_{23} \mathbf{q}_{2}+r_{33} \mathbf{q}_{3}
\end{aligned}
$$

$$
\underline{\underline{\mathbf{a}_{n}}=r_{1 n} \mathbf{q}_{1}++r_{2 n} \mathbf{q}_{2}+\cdots+r_{n-1, n} \mathbf{q}_{n-1}+r_{n n} \mathbf{q}_{n} .}
$$

The Gram-Schmidt equations can then be recast into an equivalent matrix form:
where $r_{j j}=\left\|\mathbf{v}_{j}\right\|$ and $r_{i j}=\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle$. This ${ }^{\boldsymbol{p}}$ is called the $\mathbf{Q R}$ factorization.

$$
\left\langle a_{j}^{\prime \prime}, q_{j}\right\rangle \quad{ }^{\downarrow} Q \text { is orthogonal }
$$

Fact: Every nonsingular matrix can be factored into, $A=Q R$, the product of an orthogonal matrix Q and an upper triangular matrix R.

The factorization is unique if R is positive upper triangular(meaning that all its diagonal entries are positive $\left(r_{j j}>0\right)$.

Example. Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ where

$$
\mathbf{a}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \mathbf{a}_{2}=\underline{\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)}, \mathbf{a}_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

Find the QR factorization of A.
[Ans (il) Ne have saw in Lecture 22 how to apply Gram-Schmidt to the vectors \mathbf{a}_{i} :
We found the resulting orthogonal basis to be

$$
\underline{\underline{\mathbf{v}_{1}}}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \stackrel{\mathbf{v}_{2}}{=}\left(\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right), \stackrel{\mathbf{v}_{3}}{=}=\left(\begin{array}{r}
2 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right) .
$$

Thus, letting $\mathbf{q}_{k}=\frac{\mathbf{v}_{k}}{\left\|\mathbf{v}_{k}\right\|}$, we have the orthonormal basis is

$$
\begin{aligned}
& \mathbf{q}_{1}=\underline{\overline{1}} \underset{\underline{\sqrt{2}}}{=}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \mathbf{q}_{2}=\underline{\sqrt{\frac{2}{3}}}\left(\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right), \mathbf{q}_{3}=\left(\begin{array}{r}
1 / \sqrt{3} \\
-1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right) \\
& \text { Gaining to find } R . \\
& \text { We have known } \boldsymbol{Q}=\left[\begin{array}{lll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{\mathbf{2}} & \boldsymbol{q}_{\mathbf{3}}
\end{array}\right] \text {. }
\end{aligned}
$$

It is remaining to find R.

$$
\begin{array}{cc}
\text { To }_{0} & \text { find } R: \quad R=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right] . \\
r_{i i}=\left\|v_{i}\right\| . & r_{11}=\left\|v_{1}\right\|=\sqrt{2}
\end{array}
$$

[Example Continue:]

$$
\begin{aligned}
& \gamma_{12}=\left\langle a_{2}, q_{1}\right\rangle=\left\langle\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=\frac{1}{\sqrt{2}} . \\
& \gamma_{13}=\left\langle a_{3}, q_{1}\right\rangle=\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle=\frac{1}{\sqrt{2}} .
\end{aligned}
$$

$$
\underline{Q R} \mathrm{x}=\mathrm{b}
$$

Since $Q^{-1}=Q^{T}(Q$ is orthogonal $)$, we have

$$
R \mathbf{x}=Q^{T} \mathbf{b}
$$

Therefore, we just need to solve

$$
R \mathbf{x}=Q^{T} \mathbf{b}
$$

by applying back substitution since R is upper riangular matrix.

Example. Apply this to solve the system

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\mathbf{b}
$$

From previous example, $A=Q R$.

$$
\begin{aligned}
Q R\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
R\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =Q^{\top}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

[Example $\left(\begin{array}{ccc}\sqrt{2} & \text { ontinue:] } & \frac{1}{\sqrt{2}} \\ 0 & \sqrt{\frac{3}{2}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{2}{\sqrt{3}}\end{array}\right)\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right)\binom{\frac{1}{0}}{0}$.

$$
=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}}
\end{array}\right)
$$

Using back substintoin,
(1) $\frac{2}{\sqrt{3}} z=\frac{1}{\sqrt{3}} . \Rightarrow z=\frac{1}{2}$.
(2) $\sqrt{\frac{3}{2}} y+\frac{1}{\sqrt{6}} z=\frac{-1}{\sqrt{6}} \Rightarrow y=-1 / 2$.
(3) $x=1 / 2$.

Ans: $\left(\begin{array}{c}\frac{1}{2} \\ -1 / 2 \\ 1 / 2\end{array}\right) \not 7$
4.4 Orthogonal Projections and Subspaces
§ Orthogonal projections
Recall:

Definition: We call a vector \mathbf{x} in an inner product space V is orthogonal to the subspace W of V if it is orthogonal to every vector in W, that is,

$$
\langle\underline{\underline{\mathbf{x}}}, \mathbf{w}\rangle=0 \quad \text { for all } \mathbf{w} \in W \text {. }
$$

Suppose $\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}$ is the basis of W. Thus,
x is orthogonal to $W \Leftrightarrow\left\langle\mathbf{x}, \mathbf{w}_{i}\right\rangle=0, i=1, \cdots, n$.
[To see this:] \Longrightarrow) since $w_{i} \in W,\left\langle x, w_{i}\right\rangle=0,1 \leq i \leq u$.
(ϵ) Any $y \in W$ can be written as

$$
\begin{aligned}
y & =c_{1} w_{1}+\cdots+c_{n} w_{n} . \\
\langle x, y\rangle & =\langle x, \downarrow \\
& =c_{1}\left\langle x \mid \omega_{1}\right\rangle+\cdots+c_{n}\left\langle x, w_{n}\right\rangle . \\
& =0 .
\end{aligned}
$$

Definition: The orthogonal projection of \mathbf{v} onto the subspace W of V is the element $\mathbf{w} \in W$ such that the difference $\mathbf{z}=\mathbf{v}-\mathbf{w}$ orthogonal to W.

We use the notation

$$
\mathrm{z} \perp W .
$$

The orthogonal projection "iss "unique".

Note that such \mathbf{w} is the unique vector in W that is "closet to" \mathbf{v}.

Fact: Suppose $\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}$ is an orthonormal basis of subspace W of V. If $\mathbf{w} \in W$ is the orthogonal projection of $\mathbf{v} \in V$ onto W, then

$$
\mathbf{w}=\underline{=} \underline{c}_{1} \mathbf{u}_{1}+\cdots \underline{c}_{n}^{c_{n}} \mathbf{u}_{n},
$$

where

$$
c_{j}=\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle_{.} \quad j=1, \cdots, n .
$$

[To see this:]
(i) $w \in W$ can be written as linear combination of $\left\{u_{1}, \ldots, u_{n}\right\}$, so

$$
w=c_{1} u_{1}+\cdots+c_{n} u_{n} .
$$

$\left\langle\omega, u_{j}\right\rangle=\left\langle c_{1} u_{1}+\cdots+c_{n} u_{n}, u_{j}\right\rangle=c_{j}\left\langle u_{j}, u_{j}\right\rangle$.
(2) Since ω is orthogonal projeitich of v onto $\omega_{1}=c_{j}\left\|u_{j}\right\|^{2}$

$$
(v-w) \perp W . w_{j} \in W
$$

so, $\left\langle v-w, \widetilde{u}_{j}\right\rangle=0 \Rightarrow\left\langle\underline{\left.v, u_{j}\right\rangle}=\frac{\left\langle w, u_{j}\right\rangle}{{ }^{1 \prime} c_{j}}\right.$

- If $\left\{u_{i}\right\}$ is orthogonal, then $c_{j}=\frac{\left\langle v, u_{j}\right\rangle}{\left\|u_{j}\right\|^{2}}$.

Remark: Thus, $\mathbf{v}-\sum_{k=1}^{n}\left\langle\mathbf{v}, \mathbf{u}_{k}\right\rangle \mathbf{u}_{k}$ is orthogonal to W, that is,

§ Orthogonal Subspaces

Definition: Two subspaces W, Z of V are called orthogonal if every vector in W is orthogonal to every vector in Z, that is,

$$
\langle\mathbf{w}, \mathbf{z}\rangle=0 \quad \text { for all } \mathbf{w} \in W, \mathbf{z} \in Z
$$

Immediately, we also have
Fact: If $\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}\right\}$ span W and $\left\{\mathbf{z}_{1}, \cdots, \mathbf{z}_{k}\right\}$ span Z, then

$$
\underline{W, Z} \text { are orthogonal } \Leftrightarrow\left\langle\mathbf{w}_{i}, \mathbf{z}_{j}\right\rangle=0
$$

for all $1 \leq i \leq n, 1 \leq j \leq k$.

Definition: If W is a subspace of V, its orthogonal complement W^{\perp} (pronounced " W perp") is the set of all vectors orthogonal to W, that is,

$$
\left.\left.W^{\perp}=\mathbf{v} \in V . \underline{\mathbf{v}}, \mathbf{w}\right\rangle=0 \text { for all } \mathbf{v} \in W\right\} .
$$

- It can be checked that W^{\perp} is also a subspace of V.

- If $W=\operatorname{span}\{\mathbf{w}\}$, we will also denote W^{\perp} by \mathbf{w}^{\perp}.
- Note that the only vector contained in both W and W^{\perp} is $\mathbf{0}$.

Example. Find W^{\perp}, the orthogonal complement to $W=\operatorname{span}\{\mathbf{w}\}$ in \mathbb{R}^{3}, where

$$
\begin{aligned}
& w=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \\
& \vec{x}=(x, y, z) \text { in } w^{\perp} \\
& w^{\top} \vec{x}=0
\end{aligned}
$$

$$
(2-d, m)
$$

$\left(\begin{array}{ll}{[1]} \\ \text { pint }\end{array} 1^{2}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)_{\text {tree va }}=0\right.$.

$$
x=2 y-z \cdot W^{\perp}=\left\{\left.\left(\begin{array}{c}
2 y-z \\
y \\
z
\end{array}\right) \right\rvert\, y, z \in \mathbb{R}\right\}
$$

Example. Suppose $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$, where

$$
\mathbf{w}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \mathbf{w}_{2}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

To find W^{\perp}.

$$
\begin{aligned}
& w_{1}^{\top} \vec{x}=0 \\
& w_{2}^{\top} \vec{x}=0
\end{aligned}
$$

r continue on Monday

