
Lecture 25: Quick review from previous lecture
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where rkk = kvkk = hak,qki and rij = haj,qii. This is called the QR fac-
torization.

• x is orthogonal to the subspace W of V if it is orthogonal to every vector in

W , that is,

hx,wi = 0 for all w 2 W,

denoted by

x ? W.

• The orthogonal projection of v onto the subspace W of V is the element

w 2 W such that the di↵erence z = v �w orthogonal to W .

• The orthogonal complement W?
(pronounced “W perp”) is the set of all

vectors orthogonal to W , that is,

W?
= {v 2 V : hv,wi = 0 for all w 2 W}.

—————————————————————————————————

Today we will discuss orthogonal projections and subspaces.

- Lecture will be recorded -

—————————————————————————————————
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Note that the only vector contained in both W and W?
is 0.

Example. Find W?
, the orthogonal complement to W = span{w} in R3

, where
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Example. Suppose W = span{w1,w2}, where

w1 =

0
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To find W?
.
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In general, if W = span{w1, . . . ,wk} is a subspace of Rn
, then W?

is the set

of all vectors orthogonal to all of w1, . . . ,wk.

Thus, the space W?
is precisely the kernel of the k-by-n matrix

A =

0
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[To see this:] Observe that
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Thus, x is in the kernel of A if and only if wT
j x = 0 for all j, i.e. x is orthogonal

to W = span{w1, . . . ,wk}.

Fact: If W is a subspace of V with dimW = n and dimV = m, then every

vector v 2 V can be uniquely decomposed into

v = w + z

where w 2 W and z 2 W?
.

Moreover, we have

dimW?
= m� n

and thus,

dimV =dimW + dimW?
.
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Example. Let W = imgA, where

A =

0
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Find W?
, that is, (imgA)?.
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Fact: If W is a subspace of V with dimW = n < 1, then

(W?
)
?
= W.

Recall that:

Suppose A = Am⇥n is any matrix with rankA = r. We’ve seen that

dim coimgA = r and dim kerA = n� r.

Fact: Let A be any real m⇥ n matrix. Then

coimgA = (kerA)? (and kerA = (coimgA)?).

[To see this:]

Similarly, applying the same reasoning to AT
, we find that

Fact: Let A be any real m⇥ n matrix. Then

imgA = (cokerA)? (and cokerA = (imgA)?).
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are " orthogonal to tow of A " .
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Fact: [Fredholm alternative]
The linear system Ax = b has a solution (it is compatible) , b ? cokerA

Example. Find the compatibility condition on the linear system Ax = b, where

A =

0
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[Example continue]

X Remark to the previous example.

[The same compatibility condition can also be obtained by using Gaussian Elim-

ination to solve the augment system (A|b).]
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Thus
,

Ax -- b has solutions if

bz-b,-bz=O#
compatibility condition

.


