Lecture 25: Quick review from previous lecture
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where ri; = || vi]| = (ar, qi) and r;; = (a;,q;). ThlS is ca q%;i t%ﬂe QR fac-
torization.

e x is orthogonal to the subspace W of V if it is orthogonal to every vector in
W, that is, o
(x,w) =0 for all w € W,

| | w
denoted by

x 1 W.

e The orthogonal projection of v onto the subspace W of V' is the element
w € W such that the difference z = v — w orthogonal to W.

e The orthogonal complement W+ (pronounced “W perp”) is the set f\él
vectors orthogonal to W, that is,

={veV: (v,w)=0 foral weW}.

Today we will discuss orthogonal projections and subspaces.

- Lecture will be recorded -

MATH 4242-Week 11-1 1 Spring 2020



Note that the only vector contained in both W and W+ is 0.
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Example. Find W+, the orthogonal complement to W = span{w} in R3, where
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Example. Suppose W = span{w1, wo}, where
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In general, if W = span{wy, ..., wy} is a subspace of R", then W= is the set

of all vectors orthogonal to all of wq, ..., wg.
Thus, the space W+ is precisely the kernel of the k-by-n matrix
wi
A= :
Wi
[To see this:] Observe that
wix wil
0= : = : X
wix w!
A

Thus, x is in the kernel of A if and only if WJTX = 0 for all 7, i.e. x is orthogonal

to W = span{wy, ..., wy}. )(GW'L
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Fact: If W is a subspace of V' with dimW = n and‘d'lTnV/:m, then every |
vector v € V' can be uniquely decomposed into

V:Jvz—i—z |
y .
where w € W and z € W+, W LW'L. ‘

Moreover, we have
dimW+ =m —n

and thus,

dimV=dimW + dimW+.
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Example. Let W = img A, where J
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Find W+, that is, (img A)*.
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Fact: If W is a subspace of V' with dimW =n < oo, thenln V= 'QW (J:\.. \];,“)
(W =W,

ke. =T
dia kes A
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Recall that:
Suppose A = A,,x, Is any matrix with rankA = r. We've se¢n that

dimcoimg A =r and dimkerA=n —r.

Fact: Let A be any real m x n matrix. Then

coimg A = (ker A)L (and ker A = (coimg A)~)

[To see this:] 'ZQC&” « j A = M’j A‘?’(‘S-Pq" "+ row$ O{A)

A= [I]

.7
1f % ¢ ker A, the Av=0.
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So, kev A 7« the ‘u‘o{pua. 0+ all wectovs that
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Similarly, applying the same reasoning to A’ we find that:) (L&Y A )-":_ “”"ﬂA
S

Fact: Let A be any real m x n matrix. Then

img A = (coker A (and coker A = (img A)*).
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Fact: [Fredholm alternative]
The linear system Ax = b has a solution (it is compatible) < b L coker A

A € Mpyxn
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Example. Find the compatibility condition on the linear system Ax = b, where
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[Example contmue]
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v" Remark to the previous example.

[The same compatibility condition can also be obtained by using Gaussian Elim-
ination to solve the augment system (A|b).]
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