Lecture 25: Quick review from previous lecture
where $r_{k k}=\left\|\mathbf{v}_{k}\right\|=\left\langle\mathbf{a}_{k}, \mathbf{q}_{k}\right\rangle$ and $r_{i j}=\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle$. This is called the QR factorization.

- \mathbf{x} is orthogonal to the subspace W of V if it is orthogonal to every vector in W, that is,

$$
\langle\mathbf{x}, \mathbf{w}\rangle=0 \quad \text { for all } \mathbf{w} \in W
$$

denoted by

$$
\mathbf{x} \perp W .
$$

- The orthogonal projection of \mathbf{v} onto the subspace W of V is the element $\mathbf{w} \in W$ such that the difference $\mathbf{z}=\mathbf{v}-\mathbf{w}$ orthogonal to W.
- The orthogonal complement W^{\perp} (pronounced " W perp") is the set ${ }^{\text {all }}$ vectors orthogonal to W, that is,

$$
W^{\perp}=\{\mathbf{v} \in V:\langle\mathbf{v}, \mathbf{w}\rangle=0 \text { for all } \mathbf{w} \in W\} .
$$

Today we will discuss orthogonal projections and subspaces.

- Lecture will be recorded -

Note that the only vector contained in both W and W^{\perp} is $\mathbf{0}$.

$$
\Gamma x \in W \text {, and } x \in W^{\perp} \text {. Thus }\langle x, x\rangle=0
$$

$$
\|x\|^{2}=0 \Rightarrow x=0.4
$$

Example. Find W^{\perp}, the orthogonal complement to $W=\operatorname{span}\{\mathbf{w}\}$ in \mathbb{R}^{3}, where

$$
\vec{x}=(x, y, z) \in W^{1} \quad \vec{x}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

So, $w^{\perp} \vec{x}=0 \Rightarrow\left[\frac{1}{\text { pint }}-2 \quad 1\right]_{1 \times 3} \vec{x}=0$

$$
\Rightarrow \quad x-2 y+z=0
$$

tree varublos
Thus, $W^{\perp}=\left\{\left(\begin{array}{c}2 y-z \\ y \\ z\end{array}\right) \quad y, \quad z \in \mathbb{R}\right\}$
$\Gamma \operatorname{dim} \omega^{+}=2 」$
Example. Suppose $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$, where

$$
\mathbf{w}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \mathbf{w}_{2}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

To find W^{\perp}.

$$
\begin{aligned}
& \vec{x}=(x, y, z) \in \tau J^{\perp} . \\
& \left\{\begin{array}{l}
w_{1}^{\top} \vec{x}=0, \\
w_{2}^{\top} \vec{x}=0 .
\end{array} \quad\left[\begin{array}{l}
w_{1}^{\top} \\
w_{2}^{\top}
\end{array}\right]_{2 \times 3} \vec{x}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right. \\
& \left.\Rightarrow\left[\begin{array}{ccc}
(1) & 2 & 1 \\
0 \underset{\text { prot }}{(1)} & 1 \\
\hline
\end{array}\right]_{2 \times 3}^{x} \underset{y}{x} \begin{array}{l}
z \\
y
\end{array}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] . \\
& \left\{\left.\begin{array}{l}
y=z \\
x=-3 z,
\end{array} \quad W^{\perp}=\left\{\begin{array}{c}
-3 z \\
z \\
z
\end{array}\right) \right\rvert\, z \in \mathbb{R}\right] \text {. } \\
& =\operatorname{span}\left\{\binom{-3}{1}\right\} .
\end{aligned}
$$

In general, if $W=\operatorname{span}\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ is a subspace of \mathbb{R}^{n}, then W^{\perp} is the set of all vectors orthogonal to all of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$.

Thus, the space W^{\perp} is precisely the kernel of the k-by- n matrix

$$
A=\left(\begin{array}{cc}
\mathbf{w}_{1}^{T} \\
\vdots \\
\mathbf{w}_{k}^{T} &
\end{array}\right)
$$

[To see this:] Observe that

$$
\mathbf{0}=\left(\begin{array}{c}
\mathbf{w}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{w}_{k}^{T} \mathbf{x}
\end{array}\right)=\underbrace{\left(\begin{array}{c}
\mathbf{w}_{1}^{T} \\
\vdots \\
\mathbf{w}_{k}^{T}
\end{array}\right)}_{A} \mathbf{x}
$$

Thus, \mathbf{x} is in the kernel of A if and only if $\mathbf{w}_{j}^{T} \mathbf{x}=0$ for all j, ie. \mathbf{x} is orthogonal to $W=\operatorname{span}\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$.

Fact: If W is subspace of V with $\operatorname{dim} W=n$ (dina w vector $\mathbf{v} \in V$ can be uniquely decomposed into where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$.

Moreover, we have

$$
\operatorname{dim} W^{\perp}=m-n
$$

and thus,

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}
$$

Example. Let $W=\operatorname{img} A$, where

$$
\begin{aligned}
& \text { where } \left.\begin{array}{l}
\boldsymbol{v}_{\mathbf{1}} \\
\boldsymbol{v}_{\mathbf{2}} \\
\boldsymbol{V}_{\mathbf{3}} \\
1
\end{array}\right)\left(\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)\right.
\end{aligned}
$$

Find W^{\perp}, that is, $(\operatorname{img} A)^{\perp}$.

1. Find basis for $W=\operatorname{ing} A$.

$$
W=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)\right\}
$$

2. Find \sim^{\perp}.

$$
\begin{aligned}
& \binom{v_{1}^{\top}}{v_{2}{ }^{\top}}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{0}{0} . \\
& \left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right) \xrightarrow{G E}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right) ;\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
2
\end{array}\right)=\binom{0}{0} . \\
& \sim^{\perp}=\left\{\left.\left(\begin{array}{c}
-z \\
z \\
z
\end{array}\right) \right\rvert\, z \in \mathbb{R}\right\}=\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)\right\} \\
& z^{\prime \prime}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Fact: If W is a subspace of V with $\operatorname{dim} W=n<\infty$, then
In $V=\mathbb{R}^{n}\left(d m_{n} V=n\right)$

$$
\left(W^{\perp}\right)^{\perp}=W
$$

Recall that:
Suppose $A=A_{m \times n}$ is any matrix with $\operatorname{rank} A=r$. We've seen that
 $\operatorname{dim} \operatorname{coimg} A=r \quad$ and $\quad \operatorname{dim} \operatorname{ker} A=n-r$.

Fact: Let A be any real $m \times n$ matrix. Then

$$
\operatorname{coimg} A=(\operatorname{ker} A)^{\perp} \quad\left(\operatorname{and} \operatorname{ker} A=(\operatorname{coimg} A)^{\perp}\right) .
$$

[To see this:] Recall wing $A=\operatorname{img} A^{\top}$,(span of rows of A).

$$
A=\left[\begin{array}{l}
r_{1} \top \\
r_{2} \top \\
\dot{r}_{m}^{\top}
\end{array}\right]
$$

If $x \in \operatorname{ker} A$, then $A x=0$.

$$
\left[\begin{array}{c}
r_{1} \top \\
\vdots \\
\left.r_{m}\right\urcorner
\end{array}\right] x=0
$$

so, $\operatorname{ker} A$ is the subspace of all vectors that are "orthogonal to rows of A ".
that is, $\operatorname{ker} A \perp$ (span of rows) \Rightarrow ker $A \perp$ coming A
Similarly, applying the same reasoning to A^{T}, we find that $\Rightarrow(\operatorname{ker} A)^{\perp}=\operatorname{com} n \mathrm{~A} A$
Fact: Let A be any real $m \times n$ matrix. Then

$$
\operatorname{img} A=(\operatorname{coker} A)^{\perp} \quad\left(\text { and cover } A=(\operatorname{img} A)^{\perp}\right)
$$

Fact: [Fredholm alternative]
The linear system $A \mathbf{x}=\mathbf{b}$ has a solution (it is compatible) $\Leftrightarrow b \perp$ cover A

Example. Find the compatibility condition on the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
1 & 3 & 2
\end{array}\right) . \quad(b \perp \text { poker } A)
$$

1. Find a basis for when A. (\$2.5)

$$
\begin{aligned}
& A^{\top}=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 3 \\
1 & 1 & 2
\end{array}\right) . \quad A^{\top}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) . \\
& A^{\top} \xrightarrow{\text { GeE. }}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \text {. } \\
& \left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow y=-z, x=-z \text {. } \\
& \text { where } A=\left\{\left.\left(\begin{array}{c}
-z \\
-z \\
z
\end{array}\right) \right\rvert\, z \in \mathbb{R}\right\}=\operatorname{span}\left\{\underset{\text { Spring } 2020}{(11-1} \begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \text {. }
\end{aligned}
$$

By Fact above, $\left(b_{1}, b_{2}, b_{3}\right)^{\top}$
[Example continue],
2. ${ }^{2} b^{\prime \prime} \perp$ weer $A .\left\langle b,\binom{-1}{-1}\right\rangle=0$.

$$
-b_{1}-b_{2}+b_{3}=0
$$

compatibility condition.
\checkmark Remark to the previous example.
[The same compatibility condition can also be obtained by using Gaussian Elimination to solve the augment system $(A \mid \mathbf{b})$.]

$$
\begin{aligned}
&(A \mid b)=\left(\begin{array}{ccc|c}
1 & 2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
1 & 3 & 2 & b_{3}
\end{array}\right) \\
& \xrightarrow{3-1}\left(\begin{array}{lll|l}
1 & 2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
0 & 1 & 1 & b_{3}-b_{1}
\end{array}\right) \\
& \xrightarrow{3}\left(\begin{array}{ccc|c}
1 & 2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
0 & 0 & 0 & b_{3}-b_{1}-b_{2}
\end{array}\right) .
\end{aligned}
$$

Thus, $\forall_{x}=b$ has solutions if

$$
b_{3}-b_{1}-b_{2}=0
$$

