Lecture 26: Quick review from previous lecture

- If W is a subspace of V with $\operatorname{dim} W=n$ and $\operatorname{dim} V=m$, then every vector $\mathbf{v} \in V$ can be uniquely decomposed into

$$
\mathbf{v}=\mathbf{w}+\mathbf{z}
$$

where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$. Moreover, $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$.

- $\operatorname{coimg} A=(\operatorname{ker} A)^{\perp}$ and $\operatorname{img} A=(\operatorname{coker} A)^{\perp}$.
- The linear system $A \mathbf{x}=\mathbf{b}$ has a solution (it is compatible) $\Leftrightarrow b \perp$ coker A.
- The only vector in both W and W^{\perp} is zero element $\mathbf{0}$.

Today we will discuss linear functions.

- Lecture will be recorded -

Midterm 2 will cover 2.5, Chapter 3, and 4.1-4.4. Details about Midterm 2 has been announced on Canvas.

Fact:
(1) Let A be any real $m \times n$ matrix. Any vector b in $\operatorname{img} A$ has "exactly one" vector from coimg A mapping from it.
(2) Moreover, if $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ is a basis of coimg A, then
(HL)
$\left\{A \mathbf{v}_{1}, \cdots, A \mathbf{v}_{r}\right\}$ is a basis of $\operatorname{img} A$.
[To see this:]
(1) $b \in \operatorname{ing} A$. So we can find $v \in \mathbb{R}^{n}$ so that

$$
A v=b
$$

$(\text { wooing } A)^{\perp}=$ ger A. Thus we write

$$
\begin{aligned}
V= & \underset{\operatorname{coing} A}{x}(\operatorname{ker} A)=(\operatorname{cosing} A)^{\perp} . \\
A v= & A(x+z)=A x+\frac{A}{\frac{z}{\operatorname{ker}} A}=A x .
\end{aligned}
$$

Thus $b=A x$, where $x \in \operatorname{cosing} A$.
Thus, (uni ali ne ne $)$: Suppose $A x_{1}=A x_{2}=b, x_{1}, x_{2} \in \omega \operatorname{ing} A$
Fact: A compatible linear system $A \dot{\mathrm{x}}=\mathrm{b}$ with $b \in \operatorname{limg} A$ has a unique solution $\mathbf{x}^{*} \in \operatorname{coimg} A$ satisfying $A \mathbf{x}^{*}=\mathbf{b}$.

The general solution is $\mathbf{x}=\mathbf{x}^{*}+\mathbf{z}$, where $\mathbf{x}^{*} \in \operatorname{coimg} A$ and $\mathbf{z} \in \operatorname{ker} A$. Then \mathbf{x}^{*} has the smallest norm of all the solutions to $A \mathbf{x}=\mathbf{b}$.
Any solution $x=x^{*}+z$.

Thus, $\|x\| \geq\|x *\|$. $\|$

To find the solution of minimum Euclidean norm, that is, x^{*} :

1. Using Gaussian Elimination to find the general solution \mathbf{x} to the system $A \mathbf{x}=$ b.
2. Finding the basis v_{1}, \cdots, v_{ℓ} for ger A, and then using the conditions $v_{j}^{T} \mathbf{x}=0$.

Example. Find the solution of minimum Euclidean norm \mathbf{x}^{*} of the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 3 & 4
\end{array}\right)
$$

and $\mathbf{b}=(1,1,2)^{T}$.

1. Find general solutions for $A_{x}=b$. augmented system:

$$
\begin{aligned}
& (A \mid b)=\left(\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 1 \\
1 & 3 & 4 & 2
\end{array}\right) \\
& \xrightarrow{G . E}\left(\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& x=1-z
\end{aligned}
$$

General solution : $\left\{\left.\left(\begin{array}{c}-1-z \\ 1-z \\ z\end{array}\right) \right\rvert\, z \in \mathbb{R}\right\}$
2. Find basis for bor A.

$$
\longrightarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

MATH 4242-Week $11-2$ 0, $\left.\quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=3\left(\begin{array}{c}-z \\ -z \\ z\end{array}\right)\right] z=1$.
[Example Continue]

$$
\operatorname{ker} A=\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)\right\} .
$$

3. $\left\langle\left(\begin{array}{c}-1-z \\ 1-z \\ z\end{array}\right), \quad\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)\right\rangle=0$.

Thus, $z=0$.
It implies that $x^{*}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
has the smaller norm.

Chapter 7 Linearity
7.1 Linear Functions

Definition: [Linear operators]

If $L: V \rightarrow W$ is a mapping between vector spaces V and W, we say that L is linear if for all vectors \mathbf{x} and \mathbf{y} in V, and scalars c such that

$$
\begin{aligned}
\text { (1) } \quad L[c \mathbf{x}] & =c L[\mathbf{x}] \\
\text { (2) } L[\mathbf{x}+\mathbf{y}] & =L[\mathbf{x}]+L[\mathbf{y}] .
\end{aligned}
$$

We call such a mapping L a linear operator. We call V the domain for L, and W the codomain.

We may also say L is a linear function, or a linear map (or mapping), or a linear transformation. They all refer to the same properties.

Properties:

- For any scalars c and d and any vectors \mathbf{x} and \mathbf{y} in V,

$$
L[\underline{c \mathbf{x}+d \mathbf{y}}]=\underline{-} \underline{L}[\mathbf{x}]+\underset{d}{ } L[\mathbf{y}]
$$

- For any scalars c_{1}, \cdots, c_{n} and any vectors $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ in V, then

$$
L\left[c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right]=c_{1} L\left[\mathbf{x}_{1}\right]+\cdots+c_{n} L\left[\mathbf{x}_{n}\right] .
$$

- $L[\mathbf{0}]=\mathbf{0}$ (the $\mathbf{0}$ on the left is the zero element in V; the $\mathbf{0}$ on the right is the zero element in W).
T To see this: $L[x+y]=L[x]+L[y]$.

$$
\begin{aligned}
x=0, y & =0 \\
& L[0+0]=L[0]+L[0] .
\end{aligned}
$$

$$
\left[\hat{L}_{2}^{\prime \prime}\right]
$$

Example.

1. Let $C^{0}([a, b])$ be the vector space of continuous functions on the interval $[a, b]$.

Define the operator L by

$$
L[f](x)=\int_{a}^{x} f(t) d t
$$

In other words, we have defined $L[f]$ to be a function, that is, the integral of f. Check Lis Linear:

$$
\begin{aligned}
\overline{(1) L}[c f](x)=\int_{a}^{x} \frac{c f(t) d t}{\text { content }}=c \int_{a}^{x} f d t \\
=c[f f(x) .
\end{aligned}
$$

(2)

$$
\begin{aligned}
L[f+g](x)=\int_{a}^{x} f(t)+g(t) d t & =\int_{a}^{x} f d t+\int_{a}^{x} g d t \\
& =L[f](x)+L[g](x)
\end{aligned}
$$

2. Now define the operator $L: C^{1}([a, b]) \rightarrow C^{0}([a, b])$ by

$$
L[f](x)=\frac{d}{d x} f(x)=f^{\prime}(x)
$$

where f is in $C^{1}([a, b])$, the space of differentiable functions on $[a, b]$.
Check L is Linear:
(1) $L[c f](x)=\underset{\sim}{c}(c f)^{\prime}(x)=c f^{\prime}(x)=c L[f](x)$ constant.
(2)

$$
\begin{aligned}
L[f+g](x)=(f+g)^{\prime}(x) & =f^{\prime}(x)+g^{\prime}(x) \\
& =L[f]+L[g] .
\end{aligned}
$$

Q: What are the linear operators $L: \mathbb{R} \rightarrow \mathbb{R}$?
Suppose L is any linear operator $L: \mathbb{R} \rightarrow \mathbb{R}$. Then $L[c x]=c L[x]$ for any numbers c and x (we think of c as a scalar and x as a vector, but since x is in \mathbb{R} they're both just numbers).

For any $x \in \mathbb{R}$,

$$
L[x]=L\left[\frac{x}{1,1}\right]=x L[1]
$$

Let $a=L[1]$, scalar. So the linear operation $L[x]=a x$, for fixed scalar a. ${ }^{\prime}(1 \times 1$ matiest)
Remands: All linear operations $L: \mathbb{R} \rightarrow \mathbb{R}$ are lines passing through the origins. ($L[x]=a x$]

Warning: The function $f(x)=a x+b$ is not a linear function unless $b=0$, even though its graph is also a line; this is because $f(0)=b$, so it doesn't pass through the origin (unless $b=0$)

Example. We can think of $A(m \times n$ matrix $)$ as defining a mapping L from \mathbb{R}^{n} to \mathbb{R}^{m}, defined by

$$
L[\mathbf{v}]=A \mathbf{v} \quad v \in \mathbb{R}^{n} .
$$

The mapping L is linear (that is, a linear mapping from \mathbb{R}^{n} to \mathbb{R}^{m}).
(1) $L[\mathrm{cv}]=c L[u]$
(2) $L[v+w]=L[v]+L[w]$.
$*$

Q: Are there any other linear mappings from \mathbb{R}^{n} to \mathbb{R}^{m} ? That is, can there be a linear mapping not of the above form, for some matrix A ?

Fact 1: Every linear mapping L from \mathbb{R}^{n} to \mathbb{R}^{m} is given by matrix multiplicatimon, $L[\mathbf{v}]=A \mathbf{v}$, where A is an $m \times n$ matrix.
[To see this:]
Let e_{1}, \ldots, e_{n} be the standard basis for \mathbb{R}^{n}

$$
\hat{e}_{1}, \ldots, \hat{e}_{m} \quad \text { or for } R^{m} \text {. }
$$

For $j=1, \ldots, n$,

$$
L\left[e_{j}\right]=\vec{a}_{j}=\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{m j}
\end{array}\right)=a_{1 j} \hat{e}_{1}+\cdots+a_{m j} \hat{e_{m}}
$$

Construe ot a (mu) matrix

$$
A=\left(\begin{array}{lll}
\overrightarrow{a_{1}} & \cdots & \vec{a}_{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)_{m \times n}
$$

Any $v=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n},

$$
\begin{aligned}
& =v_{1} e_{1}+\cdots+v_{n} e_{n} \\
L[v] & =v_{1} L\left[e_{n}\right]+\cdots+v_{n} L\left[e_{n}\right] \\
& =v_{1} \vec{a}_{1}+\cdots+v_{n} \vec{a}_{n} \\
& =A\left(\begin{array}{c}
v_{1} \\
i \\
v_{n}
\end{array}\right)=A v_{x}
\end{aligned}
$$

