Lecture 26: Quick review from previous lecture

• If W is a subspace of V with $\dim W = n$ and $\dim V = m$, then every vector $\mathbf{v} \in V$ can be **uniquely** decomposed into

$$\mathbf{v} = \mathbf{w} + \mathbf{z}$$

where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$. Moreover, dim $V = \dim W + \dim W^{\perp}$.

- coimg $A = (\ker A)^{\perp}$ and img $A = (\operatorname{coker} A)^{\perp}$.
- The linear system $A\mathbf{x} = \mathbf{b}$ has a solution (it is compatible) $\Leftrightarrow b \perp \operatorname{coker} A$.
- The only vector in both W and W^{\perp} is zero element **0**.

Today we will discuss linear functions.

- Lecture will be recorded -

Midterm 2 will cover 2.5, Chapter 3, and 4.1 - 4.4. Details about Midterm 2 has been announced on Canvas.

Fact:

(1) Let A be any real $m \times n$ matrix. Any vector b in img A has "exactly one" vector from coimg A mapping from it.

IR A

(2) Moreover, if $\{\mathbf{v}_1, \cdots, \mathbf{v}_r\}$ is a basis of coimg A, then

 $\{A\mathbf{v}_1, \cdots, A\mathbf{v}_r\}$ is a basis of img A.

[To see this:]

HW)

being A. So we can find ve IR" so that (1)(comp A) = ker A. Thus we write x + z(in $A = (ker A) = (com A)^{t}$. Av = A(x + z) = Ax + Az = Ax.Thus, (vnigne): Suppose Ax, = Ax, = b, x, x, z ∈ cuingA Fact: A compatible linear system $A\mathbf{x} = \mathbf{b}$ with $b \in img A$ has a unique solution $\mathbf{x}^* \in \operatorname{coimg} A$ satisfying $A\mathbf{x}^* = \mathbf{b}$. The general solution \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x} . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x}^* . \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x}^* has the smallest norm of all the solutions to \mathbf{x}^* has the solution to \mathbf{x}^* has the so The general solution is $\mathbf{x} = \mathbf{x}^* + \mathbf{z}$, where $\mathbf{x}^* \in \operatorname{coimg} A$ and $\mathbf{z} \in \ker A$. Then

Thus, 11×11 ≥ 11×*11. #

To find the solution of minimum Euclidean norm, that is, x^* :

- 1. Using Gaussian Elimination to find the general solution \mathbf{x} to the system $A\mathbf{x} = \mathbf{b}$.
- 2. Finding the basis v_1, \dots, v_ℓ for ker A, and then using the conditions $v_j^T \mathbf{x} = 0$.

Example. Find the solution of minimum Euclidean norm \mathbf{x}^* of the linear system $A\mathbf{x} = \mathbf{b}$, where

[Example Continue]

$$\ker A = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}.$$

$$3 \cdot \left\{ \begin{pmatrix} -1 - z \\ 1 - z \\ z \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \right\} = 0.$$

$$7hus, \quad z = 0.$$

$$1 \cdot \operatorname{splies} + hat \quad x^{*} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

$$has \quad the \quad smallest \quad norm. \neq$$

Chapter 7 Linearity

7.1 Linear Functions

doman

codon

Definition: [Linear operators]

If $L: V \to W$ is a mapping between vector spaces V and W, we say that L is **linear** if for all vectors **x** and **y** in V, and scalars c such that

$$\begin{array}{c} \bigcirc & L[c\mathbf{x}] = cL[\mathbf{x}] \\ \hline \mathbf{O} & L[\mathbf{x} + \mathbf{y}] = L[\mathbf{x}] + L[\mathbf{y}]. \end{array}$$

We call such a mapping L a **linear operator**. We call V the **domain** for L, and W the **codomain**.

We may also say L is a *linear function*, or a *linear map* (or mapping), or a *linear transformation*. They all refer to the same properties.

Properties:

• For any scalars c and d and any vectors \mathbf{x} and \mathbf{y} in V,

$$L[c\mathbf{x} + d\mathbf{y}] = cL[\mathbf{x}] + dL[\mathbf{y}]$$

• For any scalars c_1, \dots, c_n and any vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ in V, then

$$L[c_1\mathbf{x}_1 + \dots + c_n\mathbf{x}_n] = c_1L[\mathbf{x}_1] + \dots + c_nL[\mathbf{x}_n].$$

• $L[\mathbf{0}] = \mathbf{0}$ (the **0** on the left is the zero element in V; the **0** on the right is the zero element in W).

Example.

1. Let $C^0([a, b])$ be the vector space of continuous functions on the interval [a, b]. Define the operator L by

$$L[f](x) = \int_{a}^{x} f(t)dt.$$

In other words, we have defined L[f] to be a function, that is, the integral of

f. Check L TS Linear:
① L [cf](x)=
$$\int_{a}^{x} cf(t) dt = c \int_{a}^{x} f dt$$

 $constant$ = cl[f](x)
② L [f tg](x)= $\int_{a}^{x} f(t) + gt dt = \int_{a}^{x} f dt + \int_{a}^{x} g dt$
= L[f](x) + L[g](x)

2. Now define the operator $L: C^1([a, b]) \to C^0([a, b])$ by

$$L[f](x) = \frac{d}{dx}f(x) = f'(x),$$

where f is in $C^{1}([a, b])$, the space of differentiable functions on [a, b]. <u>Check</u> L is Linear! (D) L[cf](x) = (cf)'(x) = cf'(x) = cL[f](x). Constant C = L[f+g](x) = (f+g)'(x) = f'(x) + g'(x)

Q: What are the linear operators $L : \mathbb{R} \to \mathbb{R}$?

Suppose L is any linear operator $L : \mathbb{R} \to \mathbb{R}$. Then L[cx] = cL[x] for any numbers c and x (we think of c as a scalar and x as a vector, but since x is in \mathbb{R} they're both just numbers).

For any
$$x \in [R]$$
,
 $L[x] = L[x] = x L[1]$.
Number
let $a = L[1]$, scalar. So the linear operator
 $L[x] = a \times ,$ for fixed scalar a .
 $\frac{1}{(1 \times 1 \text{ metric})}$
emade: All linear operators $L : \mathbb{R} \rightarrow \mathbb{R}$ are
lines possing through the origins. $(L[x]=ax]$

Warning: The function f(x) = ax + b is **not** a linear function unless b = 0, even though its graph is also a line; this is because f(0) = b, so it doesn't pass through the origin (unless b = 0)

Example. We can think of A ($m \times n$ matrix) as defining a mapping L from \mathbb{R}^n to \mathbb{R}^m , defined by $L[\mathbf{v}] = A\mathbf{v} \quad v \in \mathbb{R}^n.$

The mapping L is linear (that is, a linear mapping from
$$\mathbb{R}^n$$
 to \mathbb{R}^m).
() $L[cv] = c[v]$.
(2) $L[v+w] = L[v] + L[w]$.

Q: Are there any other linear mappings from \mathbb{R}^n to \mathbb{R}^m ? That is, can there be a linear mapping not of the above form, for some matrix A?

Fact 1: Every linear mapping L from \mathbb{R}^n to \mathbb{R}^m is given by matrix multiplication, $L[\mathbf{v}] = A\mathbf{v}$, where A is an $m \times n$ matrix.

[To see this:] Let e,..., en be the standard basis for IR" é, ..., ém For j=1, ..., n, $L[\underline{e_j}] = \overline{a_j} = \begin{pmatrix} a_{ij} \\ \vdots \\ a_{m_i} \end{pmatrix} = a_{ij} \hat{e_i} + \cdots + a_{m_j} \hat{e_m}$ Constant a (mxn) motivir $A = \left(\vec{a_1} - - - \vec{a_n}\right) = \left(\begin{array}{ccc} a_{11} & - - - a_{1n} \\ \vdots & \vdots \\ a_{m1} & - - a_{mn} \end{array}\right)_m$ $V = (V_1, \dots, V_n) \cap \mathbb{R}^n,$ Vient+ Juen $L[v] = v, L[e_1] + \dots + v_n L[e_n]$ $= V_1 \vec{a}_1 + \cdots + V_n \vec{a}_n$ $= A\left(\begin{smallmatrix} v_{1} \\ \vdots \\ v_{n} \end{smallmatrix}\right) = Av.$