
Lecture 26: Quick review from previous lecture

• If W is a subspace of V with dimW = n and dimV = m, then every vector
v 2 V can be uniquely decomposed into

v = w + z

where w 2 W and z 2 W
?. Moreover, dimV =dimW + dimW

?.

• coimgA = (kerA)? and imgA = (cokerA)?.

• The linear system Ax = b has a solution (it is compatible) , b ? cokerA.

• The only vector in both W and W
? is zero element 0.

—————————————————————————————————
Today we will discuss linear functions.

- Lecture will be recorded -

—————————————————————————————————
Midterm 2 will cover 2.5, Chapter 3, and 4.1 - 4.4. Details about Midterm 2 has
been announced on Canvas.
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Fact:

(1) Let A be any real m⇥ n matrix. Any vector b in imgA has “exactly one”
vector from coimgA mapping from it.

(2) Moreover, if {v1, · · · ,vr} is a basis of coimgA, then

{Av1, · · · , Avr} is a basis of imgA.

[To see this:]

Thus, we also have

Fact: A compatible linear system Ax = b with b 2 imgA has a unique solution
x⇤ 2 coimgA satisfying Ax⇤ = b.

The general solution is x = x⇤+z, where x⇤ 2 coimgA and z 2 kerA. Then
x⇤ has the smallest norm of all the solutions to Ax = b.
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To find the solution of minimum Euclidean norm, that is, x⇤:

1. Using Gaussian Elimination to find the general solution x to the system Ax =
b.

2. Finding the basis v1, · · · , v` for kerA, and then using the conditions vT
j
x = 0.

Example. Find the solution of minimum Euclidean norm x⇤ of the linear system
Ax = b, where

A =

0

@
1 2 3
0 1 1
1 3 4

1

A .

and b = (1, 1, 2)T .
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[Example Continue]
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Chapter 7 Linearity

7.1 Linear Functions

Definition: [Linear operators]
If L : V ! W is a mapping between vector spaces V and W , we say that L is
linear if for all vectors x and y in V , and scalars c such that

L[cx] = cL[x]

L[x + y] = L[x] + L[y].

We call such a mapping L a linear operator. We call V the domain for L,
and W the codomain.

We may also say L is a linear function, or a linear map (or mapping), or a
linear transformation. They all refer to the same properties.

Properties:

• For any scalars c and d and any vectors x and y in V ,

L[cx + dy] = cL[x] + dL[y]

• For any scalars c1, · · · , cn and any vectors x1, · · · ,xn in V , then

L[c1x1 + · · · + cnxn] = c1L[x1] + · · · + cnL[xn].

• L[0] = 0 (the 0 on the left is the zero element in V ; the 0 on the right is the
zero element in W ).
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Example.

1. Let C0([a, b]) be the vector space of continuous functions on the interval [a, b].
Define the operator L by

L[f ](x) =

Z
x

a

f (t)dt.

In other words, we have defined L[f ] to be a function, that is, the integral of
f .

2. Now define the operator L : C1([a, b]) ! C
0([a, b]) by

L[f ](x) =
d

dx
f (x) = f

0(x),

where f is in C
1([a, b]), the space of di↵erentiable functions on [a, b].
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Q: What are the linear operators L : R ! R?
Suppose L is any linear operator L : R ! R. Then L[cx] = cL[x] for any

numbers c and x (we think of c as a scalar and x as a vector, but since x is in R
they’re both just numbers).

Warning: The function f (x) = ax+ b is not a linear function unless b = 0, even
though its graph is also a line; this is because f (0) = b, so it doesn’t pass through
the origin (unless b = 0)

Example. We can think of A (m⇥ n matrix) as defining a mapping L from Rn

to Rm, defined by
L[v] = Av v 2 Rn

.

The mapping L is linear (that is, a linear mapping from Rn to Rm).
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Q: Are there any other linear mappings from Rn to Rm? That is,
can there be a linear mapping not of the above form, for some matrix A?

Fact 1: Every linear mapping L from Rn to Rm is given by matrix multiplica-
tion, L[v] = Av, where A is an m⇥ n matrix.

[To see this:]
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