Lecture 26: Quick review from previous lecture

- If W is a subspace of V with $\dim W = n$ and $\dim V = m$, then every vector $v \in V$ can be uniquely decomposed into $v = w + z$ where $w \in W$ and $z \in W^\perp$. Moreover, $\dim V = \dim W + \dim W^\perp$.

- $\text{coimg } A = (\ker A)^\perp$ and $\img A = (\coker A)^\perp$.
- The linear system $Ax = b$ has a solution (it is compatible) $\iff b \perp \coker A$.
- The only vector in both W and W^\perp is zero element 0.

Today we will discuss linear functions.

- Lecture will be recorded -

Midterm 2 will cover 2.5, Chapter 3, and 4.1 - 4.4. Details about Midterm 2 has been announced on Canvas.
Fact:
(1) Let A be any real $m \times n$ matrix. Any vector b in $\text{img } A$ has “exactly one” vector from $\text{coimg } A$ mapping from it.

(2) Moreover, if $\{v_1, \cdots, v_r\}$ is a basis of $\text{coimg } A$, then
\[
\{Av_1, \cdots, Av_r\} \text{ is a basis of } \text{img } A.
\]

[To see this:]

(1) $b \in \text{img } A$. So we can find $v \in \mathbb{R}^n$ so that $Av = b$.

\[\text{(coimg } A)^\perp = \text{ker } A.\]

Thus we write
\[V = x + z \in \text{coimg } A \subseteq (\text{ker } A) = (\text{coimg } A)^\perp.
\]

\[\text{Av} = A(x + z) = Ax + A\overline{z} = Ax.
\]

Thus $b = Ax$, where $x \in \text{coimg } A$.

(Unique): Suppose $Ax_1 = Ax_2 = b$, $x_1, x_2 \in \text{coimg } A$.

\[A(x_1 - x_2) = 0.\]

Thus, we also have

Fact: A compatible linear system $Ax = b$ with $b \in \text{img } A$ has a unique solution $x^* \in \text{coimg } A$ satisfying $Ax^* = b$.

The general solution is $x = x^* + z$, where $x^* \in \text{coimg } A$ and $z \in \text{ker } A$. Then x^* has the smallest norm of all the solutions to $Ax = b$.

Any solution $x = x^* + z$.

\[
\begin{align*}
11x_1^2 &= 11x_1^2 + z_1^2 = 11x^*_1 + 2\langle x^*, z \rangle \\
&\leq 11x^*_1 + 11z_1^2 \\
&\leq 11x^*_1 + 11z_1^2
\end{align*}
\]

Thus, $11x_1^2 \geq 11x^*_1$.
To find the solution of minimum Euclidean norm, that is, \(x^* \):

1. Using Gaussian Elimination to find the general solution \(x \) to the system \(Ax = b \).

2. Finding the basis \(v_1, \ldots, v_\ell \) for \(\text{ker} \ A \), and then using the conditions \(v_j^T x = 0 \).

Example. Find the solution of minimum Euclidean norm \(x^* \) of the linear system \(Ax = b \), where

\[
A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{pmatrix}.
\]

and \(b = (1, 1, 2)^T \).

1. Find general solutions for \(Ax = b \).

 augmented system:

 \[
 (A \ | \ b) = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 3 & 4 & 2 \end{pmatrix}.
 \]

 G.E. \[
 \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
 \]

 \(y = 1 - z \)

 \(x = 1 - 2y - 3z = -1 - z \).

 General solution: \(\{(\begin{pmatrix} -1-z \\ 1-z \\ z \end{pmatrix} \ | \ z \in \mathbb{R} \} \)

2. Find basis for \(\text{ker} \ A \).

 \[
 \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
 \]

 So, \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} -z \\ z \\ z \end{pmatrix} \) if \(z = 1 \).
\[\ker A = \text{span} \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}. \]

3. \[\left\langle \begin{pmatrix} -1 & -2 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\rangle = 0. \]

Thus, \[z = 0. \]

It implies that \[x^* = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}. \]

has the smallest norm. \#
Chapter 7 Linearity

7.1 Linear Functions

Definition: [Linear operators]
If $L : V \rightarrow W$ is a mapping between vector spaces V and W, we say that L is **linear** if for all vectors x and y in V, and scalars c such that

1. $L[cx] = cL[x]$

We call such a mapping L a **linear operator**. We call V the **domain** for L, and W the **codomain**.

We may also say L is a **linear function**, or a **linear map** (or mapping), or a **linear transformation**. They all refer to the same properties.

Properties:

- For any scalars c and d and any vectors x and y in V,
 $$L[cx + dy] = cL[x] + dL[y]$$

- For any scalars c_1, \ldots, c_n and any vectors x_1, \ldots, x_n in V, then
 $$L[c_1x_1 + \cdots + c_nx_n] = c_1L[x_1] + \cdots + c_nL[x_n].$$

- $L[0] = 0$ (the 0 on the left is the zero element in V; the 0 on the right is the zero element in W).

 To see this:
 $$L[x + y] = L[x] + L[y].$$
 \[x = 0, \quad y = 0. \]
 $$L[0+0] = L[0] + L[0].$$
 Thus, $0 = L[0]$
Example.

1. Let \(C^0([a, b]) \) be the vector space of continuous functions on the interval \([a, b]\). Define the operator \(L \) by

\[
L[f](x) = \int_a^x f(t) dt.
\]

In other words, we have defined \(L[f] \) to be a function, that is, the integral of \(f \).

Check \(L \) is Linear:

\[
\begin{align*}
\text{① } L[cf](x) &= \int_a^x cf(t) dt = c \int_a^x f(t) dt = cL[f](x), \\
\text{② } L[f+g](x) &= \int_a^x (f+g)(t) dt = \int_a^x f(t) dt + \int_a^x g(t) dt = L[f](x) + L[g](x).
\end{align*}
\]

2. Now define the operator \(L : C^1([a, b]) \rightarrow C^0([a, b]) \) by

\[
L[f](x) = \frac{d}{dx} f(x) = f'(x),
\]

where \(f \) is in \(C^1([a, b]) \), the space of differentiable functions on \([a, b]\).

Check \(L \) is Linear:

\[
\begin{align*}
\text{① } L(cf)(x) &= (cf)'(x) = cf'(x) = cL[f](x), \\
\text{② } L[f+g](x) &= (f+g)'(x) = f'(x) + g'(x) = L[f] + L[g].
\end{align*}
\]
Q: What are the linear operators $L : \mathbb{R} \to \mathbb{R}$?

Suppose L is any linear operator $L : \mathbb{R} \to \mathbb{R}$. Then $L[cx] = cL[x]$ for any numbers c and x (we think of c as a scalar and x as a vector, but since x is in \mathbb{R} they’re both just numbers).

For any $x \in \mathbb{R}$,

$$L[x] = L[\frac{x}{1}] = xL[1].$$

Let $\alpha = L[1]$, scalar. So the linear operator $L[x] = \alpha x$, for fixed scalar α.

Remark: All linear operators $L : \mathbb{R} \to \mathbb{R}$ are lines passing through the origins. ($L[x] = ax$)

Warning: The function $f(x) = ax + b$ is not a linear function unless $b = 0$, even though its graph is also a line; this is because $f(0) = b$, so it doesn’t pass through the origin (unless $b = 0$)

Example. We can think of A ($m \times n$ matrix) as defining a mapping L from \mathbb{R}^n to \mathbb{R}^m, defined by $L[v] = Av$ $v \in \mathbb{R}^n$.

The mapping L is linear (that is, a linear mapping from \mathbb{R}^n to \mathbb{R}^m).

\blacksquare
Q: Are there any other linear mappings from \mathbb{R}^n to \mathbb{R}^m? That is, can there be a linear mapping not of the above form, for some matrix A?

Fact 1: Every linear mapping L from \mathbb{R}^n to \mathbb{R}^m is given by matrix multiplication, $L[v] = Av$, where A is an $m \times n$ matrix.

[To see this:]

Let e_1, \ldots, e_n be the standard basis for \mathbb{R}^n.

For $j = 1, \ldots, n$,

$$L[e_j] = \hat{a}_j = \left(\begin{array}{c} a_{1j} \\ \vdots \\ a_{mj} \end{array} \right) = a_{1j} \hat{e}_1 + \cdots + a_{mj} \hat{e}_m.$$

Construct a $(m \times n)$ matrix

$$A = \left(\begin{array}{ccc} \hat{a}_1 & \cdots & \hat{a}_n \end{array} \right) = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array} \right)_{m \times n}.$$

Any $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$,

$$v = v_1 e_1 + \cdots + v_n e_n$$

$$L[v] = v_1 L[e_1] + \cdots + v_n L[e_n]$$

$$= v_1 \hat{a}_1 + \cdots + v_n \hat{a}_n$$

$$= A \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right) = A v.$$