Lecture 27: Quick review from previous lecture

- A compatible linear system $A \mathbf{x}=\mathbf{b}$ with $b \in \operatorname{img} A$ has a unique solution $\mathbf{x}^{*} \in \operatorname{coimg} A$ satisfying $A \mathbf{x}^{*}=\mathbf{b}$.
The general solution is $\mathbf{x}=\mathbf{x}^{*}+\mathbf{z}$, where $\mathbf{x}^{*} \in \operatorname{coimg} A$ and $\mathbf{z} \in \operatorname{ker} A$. Then x^{*} has the smallest norm of all the solutions to $A \mathbf{x}=\mathbf{b}$.
- We call $L: V \rightarrow W$ is a linear mapping if for all vectors \mathbf{x} and \mathbf{y} in V, and scalars c such that

$$
L[c \mathbf{x}]=c L[\mathbf{x}], \quad L[\mathbf{x}+\mathbf{y}]=L[\mathbf{x}]+L[\mathbf{y}] .
$$

- Every linear mapping L from \mathbb{R}^{n} to \mathbb{R}^{m} is given by matrix multiplication, $L[\mathbf{v}]=A \mathbf{v}$, where A is an $m \times n$ matrix. $L: \mathbb{R} \rightarrow \mathbb{R}, L[x]=a x$,

Today we will discuss linear functions.

- Lecture will be recorded -
- Midterm 2 will cover 2.5, Chapter 3, and 4.1-4.4. Details about Midterm 2 has been announced on Canvas. See category "Announcements".
- Solutions for HW 5 and HW 6 are posted on Canvas. Only the solutions of these two HWs will be provided since they cannot be returned in this semester due to the closure of the campus.

\S The space of Linear Functions $\mathcal{L}(V, W)$.

Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W.

- Add two linear operators $L_{1}, L_{2} \in \mathcal{L}(V, W)$ together:

$$
\left(L_{1}+L_{2}\right)[\mathbf{x}]=L_{1}[\mathbf{x}]+L_{2}[\mathbf{x}] .
$$

Then $L_{1}+L_{2}$ is a linear operator.

- If $L \in \mathcal{L}(V, W)$ is a linear operator and a is a scalar, we can define the new linear operator

$$
(a L)[\mathbf{x}]=a L[\mathbf{x}]
$$

- the zero element of $\mathcal{L}(V, W)$ is the zero function $O[\mathbf{v}]=\mathbf{0}_{\text {i zero element in }} \boldsymbol{W}$. Thus, " $\mathcal{L}(V, W)$ is a vector space", see Definition 2.1_ in textbook for the definition of a vector space.

$$
\rightarrow L=\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L[\alpha]=A x .
$$

Combining with Fact 1, we have
Fact 2: If $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$, then the space $\mathcal{M}_{m \times n}$ of all $m \times n$ matrices is a vector space. (which is a fact we already knew.)

Example. The space of all linear transformations of the plane, $\mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, is indeed $\mathcal{M}_{2 \times 2}$. And its standard basis are

For any $A \in M_{2 \times 2}$,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\underline{a} E_{1}+\underline{b} E_{2}+\underline{c} E_{3}+\underline{d} E_{4}
$$

\S Composition.

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

$\operatorname{dim} \tilde{M}=3$. \boldsymbol{K}_{x}
Fact 3: If $L: V \rightarrow W$ is a linear operator and $M: W \rightarrow Z$ is another linear operator, then we can define their composition $M \circ L: V \rightarrow Z$ by

Then $(M \circ L)$ is linear.
For c, d scalars, x, y is U, To show

$$
\begin{aligned}
&(M 0 L)[c x+d y]=c(M 0 L)[x]+d(M 0 L)[y] . \\
&(M \cdot L)[c x+d y] \\
&=M[L[c x+d y]]=M\left[c \frac{m w}{M_{0} L[x]}+d \stackrel{i n}{L[y]}\right] \\
&=c M[L[x]]+d M[L[y]] .
\end{aligned}
$$

$$
=c(M \cdot L)[x]+d(M O L)[y]
$$

Example. If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$ and $Z=\mathbb{R}^{k}$, then $L[\mathbf{v}]=\underline{A v}$ and $M[\mathbf{w}]=\underline{B} \mathbf{w}$ for some matrices $A=A_{m \times n}$ and $B=B_{k \times m}$.

Consequently, the composition is given by

$$
\underline{(M \circ L)[\mathbf{v}]}=\underline{M[L[\mathbf{v}]}]=M[\underline{A \mathbf{v}}]=(\underline{B} A) \mathbf{v}
$$

In other words, multiplying two matrices corresponds to composition of the corresponding linear transformations.

$$
\left.\mathbb{R}^{n} \xrightarrow[{(M \circ L)[v]=(B A})\right]{\xrightarrow{L_{v}=A_{v}} \mathbb{R}^{m} \xrightarrow{M_{v=B v}} \mathbb{R}^{k} .}
$$

Example. Previously, we saw 2D rotation matrices

$$
Q_{\theta}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

If $\mathbf{x}=(r \cos \phi, r \sin \phi)$ is some vector in \mathbb{R}^{2} (which we are expressing in terms of its polar coordinates), then find $Q_{\theta} \mathbf{x}$.

$$
\begin{aligned}
& Q_{\theta} \times=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{r \cos \phi}{r \sin \phi} \\
& \\
& =\left(\begin{array}{ccc}
r \cos (\theta+\phi) \\
r & \sin (\theta+\phi)
\end{array}\right)
\end{aligned}
$$

Thus, applying Q_{θ} to a vector in \mathbb{R}^{2} is equitaleat to rotate the recto counter clockwise by angle θ.

$$
\begin{aligned}
& \text { If we have two rotation matrices } Q_{\theta} \text { and } Q_{\psi} \text { then their product is } \\
& \left.\qquad \begin{array}{rl}
Q_{\theta} Q_{\psi} & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)^{\cos \psi} \\
\hline \sin \psi & \cos \psi
\end{array}\right) \\
& \\
& =\left(\begin{array}{rr}
\cos (\underline{\theta+\psi}) \\
\sin (\theta+\psi) & \cos (\theta+\psi) \\
& =(\theta+\psi)
\end{array}\right) \\
&
\end{aligned}
$$

§ Inverses

Definition: Let $L: V \rightarrow W$ be a linear operator. If $M: W \rightarrow V$ is an operator such that

$$
\begin{equation*}
M \circ L=I_{V}, \quad L \circ M=I_{W} \quad \quad m\lceil y\rceil \tag{1}
\end{equation*}
$$

where I_{V} is the identity map on V, and I_{W} is the identity map on W. Then we call L is invertible and W is the inverse of L and write $W=L^{-1}$.

Fact 4: If $L: V \rightarrow W$ is a linear function and is invertible, then its inverse L^{-1} is a also linear function.

Example. If $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$, so that L and M are given by the matrix multiplication by A and B, respectively. Then the condition (1) is reduced to

$$
A B=I_{m}, \quad B A=I_{n} .
$$

$L[v]=A v$.
$M[w]=B w$.
$L O M=A B=\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.
$M \cdot L=B A=\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Definition: Let $L: V \rightarrow W$ is a linear operator.

- Since the definition is symmetric in L and L^{-1}, if L^{-1} exists, then $\left(L^{-1}\right)^{-1}=$ L.
- If $M: W \rightarrow V$ satisfies $M \circ L=I_{V}$, then M is called a left inverse for L.
- If $M: W \rightarrow V$ satisfies $L \circ M=I_{W}$, then M is called a right inverse for L.

Example. Let $J[f](x)=\int_{a}^{x} f(t) d t$ be the integration operator, and $D[f](x)=$ $f^{\prime}(x)$ be differentiation.

1. Compute $D \circ J$.
2. Compute $J \circ D$.
(1) $(D \cdot])[f](x)=D[J f[x]]=\frac{d}{d x} \int_{a}^{x} f(t) d t$

Do $=I$.
$=f(x)$
So, D is a left inverse of J.
(2)

$$
(J \circ D)[f](x)=\int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)
$$

So, D is a right incose of J if $f(a)=0$.
7.2 Linear Transformations

Consider a linear function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. We have known that "Every linear mapping L from \mathbb{R}^{n} to \mathbb{R}^{m} is given by matrix multiplication,

$$
L[\mathbf{v}]=A \mathbf{v}
$$

where A is an $m \times n$ matrix."
The following we will see how the linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ representing the geometrical interpretation.

$$
\text { 1. } \begin{aligned}
& A=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
& \qquad L\left[e_{1}\right]=A e_{1}=\binom{\cos \theta}{\sin \theta} \\
& L\left[e_{2}\right]=A e_{2}=\binom{-\sin \theta}{\cos \theta}
\end{aligned}
$$

* counterclockwise by angle θ.

2. $A=\left(\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
$L\left[e_{1}\right]=\binom{\cos \theta}{-\sin \theta}$
$L\left[e_{2}\right]=\binom{\sin \theta}{\cos \theta}$.

* clockwise by angle θ.

3. $A=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\begin{aligned}
& L\left[e_{1}\right]=\binom{1}{0} \\
& L\left[e_{2}\right]=\binom{0}{-1}
\end{aligned}
$$

* Refleitan through x-axis.

4. Reflects points through the line $x=y$:

$$
\begin{aligned}
& L\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& L\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
\end{aligned}
$$

5. Reflects points through the origin:

$$
\begin{aligned}
& L\left[e_{1}\right]=\binom{-1}{0} \\
& L\left[e_{2}\right]=\binom{0}{-1} \\
& A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] .
\end{aligned}
$$

Example. Find the linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which

1. first rotates points counterclockwise about the origin through $\pi / 4$;
2. then reflects points through the line $x=y$.

$$
\begin{aligned}
& L_{2 x}=B x=\left[\begin{array}{cc}
\cos \pi / 4 & -\sin \pi / 4 \\
\sin \pi / 4 & \cos \pi / 4
\end{array}\right] x \\
& L_{1} y=A y=\left[\begin{array}{ll}
0 & 1 \\
1 & 4
\end{array}\right] y . \\
& \begin{aligned}
L=L_{1} \cdot L_{2} & =A B . \\
& =\left[\begin{array}{ll}
D & 1 \\
1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] . z 4 .
\end{aligned}
\end{aligned}
$$

