
Lecture 27: Quick review from previous lecture

• A compatible linear system Ax = b with b 2 imgA has a unique solution
x⇤ 2 coimgA satisfying Ax⇤ = b.

The general solution is x = x⇤ + z, where x⇤ 2 coimgA and z 2 kerA. Then
x⇤ has the smallest norm of all the solutions to Ax = b.

• We call L : V ! W is a linear mapping if for all vectors x and y in V , and
scalars c such that

L[cx] = cL[x], L[x + y] = L[x] + L[y].

• Every linear mapping L from Rn to Rm is given by matrix multiplication,
L[v] = Av, where A is an m⇥ n matrix.

—————————————————————————————————
Today we will discuss linear functions.

- Lecture will be recorded -

—————————————————————————————————

• Midterm 2 will cover 2.5, Chapter 3, and 4.1 - 4.4. Details about Midterm 2
has been announced on Canvas. See category ”Announcements”.

• Solutions for HW 5 and HW 6 are posted on Canvas. Only the solutions of
these two HWs will be provided since they cannot be returned in this semester
due to the closure of the campus.
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§ The space of Linear Functions L(V,W ).

Let L(V,W ) be the set of all linear functions L mapping from vector space V
to vector space W .

• Add two linear operators L1, L2 2 L(V,W ) together:

(L1 + L2)[x] = L1[x] + L2[x].

Then L1 + L2 is a linear operator.

• If L 2 L(V,W ) is a linear operator and a is a scalar, we can define the new
linear operator

(aL)[x] = aL[x]

• the zero element of L(V,W ) is the zero function O[v] = 0.

Thus,“ L(V,W ) is a vector space”, see Definition 2.1 in textbook for the definition
of a vector space.

Combining with Fact 1, we have

Fact 2: If V = Rn and W = Rm, then the space Mm⇥n of all m⇥ n matrices
is a vector space. (which is a fact we already knew.)

Example. The space of all linear transformations of the plane, L(R2
,R2), is

indeed M2⇥2. And its standard basis are

E1 =

✓
1 0
0 0

◆
, E2 =

✓
0 1
0 0

◆
, E3 =

✓
0 0
1 0

◆
, E4 =

✓
0 0
0 1

◆
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§ Composition.

Fact 3: If L : V ! W is a linear operator and M : W ! Z is another linear
operator, then we can define their composition M � L : V ! Z by

(M � L)[v] = M [L[v]].

Then (M � L) is linear.

Example. If V = Rn, W = Rm and Z = Rk, then L[v] = Av and M [w] = Bw
for some matrices A = Am⇥n and B = Bk⇥m.

Consequently, the composition is given by

(M � L)[v] = M [L[v]] = M [Av] = (BA)v

In other words, multiplying two matrices corresponds to composition of the cor-
responding linear transformations.
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Example. Previously, we saw 2D rotation matrices

Q✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

If x = (r cos�, r sin�) is some vector in R2 (which we are expressing in terms of
its polar coordinates), then find Q✓x.

If we have two rotation matrices Q✓ and Q , then their product is
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§ Inverses

Definition: Let L : V ! W be a linear operator. If M : W ! V is an
operator such that

M � L = IV , L �M = IW (1)

where IV is the identity map on V , and IW is the identity map on W . Then we
call L is invertible and W is the inverse of L and write W = L

�1.

Fact 4: If L : V ! W is a linear function and is invertible, then its inverse
L
�1 is a also linear function.

Example. If V = Rn and W = Rm, so that L and M are given by the matrix
multiplication by A and B, respectively. Then the condition (1) is reduced to

AB = Im, BA = In.
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Definition: Let L : V ! W is a linear operator.

• Since the definition is symmetric in L and L�1, if L�1 exists, then (L�1)�1 =
L.

• If M : W ! V satisfies M � L = IV , then M is called a left inverse for
L.

• If M : W ! V satisfies L �M = IW , then M is called a right inverse
for L.

Example. Let J [f ](x) =
R
x

a
f (t)dt be the integration operator, and D[f ](x) =

f
0(x) be di↵erentiation.

1. Compute D � J .

2. Compute J �D.
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7.2 Linear Transformations

Consider a linear function L : Rn ! Rn. We have known that ”Every linear
mapping L from Rn to Rm is given by matrix multiplication,

L[v] = Av,

where A is an m⇥ n matrix.”
The following we will see how the linear transformation L : R2 ! R2 representing

the geometrical interpretation.

1. A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

2. A =

✓
cos ✓ sin ✓

� sin ✓ cos ✓

◆

3. A =

✓
1 0
0 �1

◆
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4. Reflects points through the line x = y:

5. Reflects points through the origin:

Example. Find the linear transformation L : R2 ! R2 which

1. first rotates points counterclockwise about the origin through ⇡/4;

2. then reflects points through the line x = y.
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