Lecture 27: Quick review from previous lecture

• A compatible linear system $A\mathbf{x} = \mathbf{b}$ with $b \in \operatorname{img} A$ has a unique solution $\mathbf{x}^* \in \operatorname{coimg} A$ satisfying $A\mathbf{x}^* = \mathbf{b}$.

The general solution is $\mathbf{x} = \mathbf{x}^* + \mathbf{z}$, where $\mathbf{x}^* \in \text{coimg } A$ and $\mathbf{z} \in \ker A$. Then \mathbf{x}^* has the smallest norm of all the solutions to $A\mathbf{x} = \mathbf{b}$.

• We call $L: V \to W$ is a linear mapping if for all vectors **x** and **y** in V, and scalars c such that

$$L[c\mathbf{x}] = cL[\mathbf{x}], \qquad L[\mathbf{x} + \mathbf{y}] = L[\mathbf{x}] + L[\mathbf{y}].$$

• Every linear mapping L from \mathbb{R}^n to \mathbb{R}^m is given by matrix multiplication, $L[\mathbf{v}] = A\mathbf{v}$, where A is an $m \times n$ matrix. $L: \mathbb{R} \to \mathbb{R}$, $L[\mathbf{x}] = a \times$,

Today we will discuss linear functions.

- Lecture will be recorded -

- Midterm 2 will cover 2.5, Chapter 3, and 4.1 4.4. Details about Midterm 2 has been announced on Canvas. See category "Announcements".
- Solutions for HW 5 and HW 6 are posted on Canvas. Only the solutions of these two HWs will be provided since they cannot be returned in this semester due to the closure of the campus.

§ The space of Linear Functions $\mathcal{L}(V, W)$.

Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W.

• Add two linear operators $L_1, L_2 \in \mathcal{L}(V, W)$ together:

$$(L_1 + L_2)[\mathbf{x}] = L_1[\mathbf{x}] + L_2[\mathbf{x}].$$

Then $L_1 + L_2$ is a linear operator.

• If $L \in \mathcal{L}(V, W)$ is a linear operator and a is a scalar, we can define the new linear operator

$$(aL)[\mathbf{x}] = aL[\mathbf{x}]$$

• the zero element of $\mathcal{L}(V, W)$ is the zero function $O[\mathbf{v}] = \mathbf{0}$, zero element in \mathcal{W} .

Thus, " $\mathcal{L}(V, W)$ is a vector space", see Definition 2.1 in textbook for the definition of a vector space.

Combining with Fact 1, we have

Fact 2: If $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$, then the space $\mathcal{M}_{m \times n}$ of all $m \times n$ matrices is a vector space. (which is a fact we already knew.)

Example. The space of all linear transformations of the plane, $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$, is indeed $\mathcal{M}_{2\times 2}$. And its standard basis are

$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

For any
$$A \in M_{2\times 2}$$
,
 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a E_1 + b E_2 + c E_3 + d E_4$
MATH 4242-Week 11-3
 $E_X : M = \begin{bmatrix} 2 \times 2 \end{bmatrix}$ symmetry matrices $B = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$
 $B = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$

§ Composition.

for some matrices $A = A_{m \times n}$ and $B = B_{k \times m}$.

Consequently, the composition is given by

$$(\underbrace{M \circ L})[\mathbf{v}] = \underbrace{M[L[\mathbf{v}]]} = M[A\mathbf{v}] = (BA)\mathbf{v}$$

In other words, multiplying two matrices corresponds to composition of the corresponding linear transformations.

Example. Previously, we saw 2D rotation matrices

$$Q_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

If $\mathbf{x} = (r \cos \phi, r \sin \phi)$ is some vector in \mathbb{R}^2 (which we are expressing in terms of its polar coordinates), then find $Q_{\theta}\mathbf{x}$.

$$\begin{aligned}
\mathcal{Q}_{\theta} \times &= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r\cos \theta \\ r\sin \theta \end{pmatrix} \\
&= \begin{pmatrix} r\cos (\theta + \phi) \\ r\sin (\theta + \phi) \end{pmatrix} \\
&= \begin{pmatrix} r\cos (\theta + \phi) \\ r\sin (\theta + \phi) \end{pmatrix} \\
\end{aligned}$$
Thus, applying Θ_{θ} to a vector in \mathbb{R}^{2} is equivalent to rotate the vector counter clockwise by angle θ .
If we have two rotation matrices Q_{θ} and Q_{ψ} , then their product is $\mathbb{Q}_{\theta} \otimes \mathcal{Q}_{\Psi} = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \cos (\theta + \psi) \\ \cos (\theta + \psi) \end{pmatrix} \\
&= \begin{pmatrix} \cos (\theta + \psi) \\ \cos (\theta +$

Fact 4: If $L: V \to W$ is a linear function and is invertible, then its inverse L^{-1} is a also linear function.

Example. If $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$, so that L and M are given by the matrix multiplication by A and B, respectively. Then the condition (1) is reduced to

Definition: Let $L: V \to W$ is a linear operator.

- Since the definition is symmetric in L and L^{-1} , if L^{-1} exists, then $(L^{-1})^{-1} = L$.
- If $M: W \to V$ satisfies $M \circ L = I_V$, then M is called a **left inverse** for L.
- If $M: W \to V$ satisfies $L \circ M = I_W$, then M is called a **right inverse** for L.

Example. Let $J[f](x) = \int_a^x f(t)dt$ be the integration operator, and D[f](x) = f'(x) be differentiation.

- 1. Compute $D \circ J$.
- 2. Compute $J \circ D$. (1) $(D \circ J) [f](x) = D [J f f x] = \frac{d}{dx} \int_{a}^{x} f(t) dt$ $D \circ J = I$. $S \circ , D$ is a left inverse of J. (2) (-2) = 0

$$(J_{0})[f](x) = \int_{a}^{x} f'(t) dt = f(x) - f(a).$$

So, D is a right mease of J if
$$f(a) = 0$$
.
(is NOT a right mease of J if $f(a) \neq 0$.

7.2 Linear Transformations

Consider a linear function $L : \mathbb{R}^n \to \mathbb{R}^n$. We have known that "Every linear mapping L from \mathbb{R}^n to \mathbb{R}^m is given by matrix multiplication,

$$L[\mathbf{v}] = A\mathbf{v},$$

where A is an $m \times n$ matrix."

The following we will see how the linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ representing the geometrical interpretation.

MATH 4242-Week 11-3

Example. Find the linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ which

- 1. first rotates points counterclockwise about the origin through $\pi/4$;
- 2. then reflects points through the line x = y.

$$L_{2} \times = B \times = \begin{bmatrix} \cos 7/4 & -\sin 7/4 & -\sin 7/4 & \cos 7/4 \\ \cos 7/4 & \cos 7/4 & -\sin 7/4 & -\sin 7/4 \end{bmatrix} \times L_{1} = A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} =$$