Lecture 28: Quick review from previous lecture

- Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W. Then $\mathcal{L}(V, W)$ is a vector space.
- If $L: V \to W$ is a linear operator and $M: W \to Z$ is another linear operator, then we can define their **composition** $M \circ L: V \to Z$ by

$$(M \circ L)[\mathbf{v}] = M[L[\mathbf{v}]].$$

• If $M: W \to V$ is an operator such that

$$M \circ L = I_V, \quad L \circ M = I_W \tag{1}$$

where I_V is the identity map on V, and I_W is the identity map on W. Then we call L is **invertible** and W is the **inverse** of L and write $W = L^{-1}$.

Today we will discuss linear transformations.

- Lecture will be recorded -

- Midterm 2 will cover 2.5, Chapter 3, and 4.1 4.4. Details about Midterm 2 has been announced on Canvas. See category "Announcements".
- Solutions for HW 5 and HW 6 are posted on Canvas. Only the solutions of these two HWs will be provided since they cannot be returned in this semester due to the closure of the campus.

§ Change of Basis

1. In \mathbb{R}^n , change coordinates from $\mathbf{e}_1, \cdots, \mathbf{e}_n$ to $\mathbf{v}_1, \cdots, \mathbf{v}_n$.

Consider the vector $\vec{\mathbf{x}}$ in \mathbb{R}^n with the coordinate in the standard basis $\mathbf{e}_1, \cdots, \mathbf{e}_n$:

that is, $\vec{\mathbf{x}} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$.

Q: How do we find the coordinate of the same vector $\vec{\mathbf{x}}$ to the new basis $\mathbf{v}_1, \cdots, \mathbf{v}_n$?

$$\underbrace{\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}}_{\mathbf{e}_1, \cdots, \mathbf{e}_n} \longrightarrow \underbrace{\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}}_{\mathbf{v}_1, \cdots, \mathbf{v}_n} \overset{\text{cond. to } (V_1, \cdots, V_n)}{\underbrace{(x'_1)}_{\mathbf{v}_1, \cdots, \mathbf{v}_n}}$$

In other words, finding $(x'_1, \cdots, x'_n)^T$ such that

$$\begin{aligned} \vec{\mathbf{x}} &= \underline{x_1 \mathbf{e}_1 + \dots + \underline{x_n \mathbf{e}_n}} = \overline{x_1' \mathbf{v}_1} + \dots + \overline{x_n' \mathbf{v}_n}. \\ \vec{\mathbf{x}} &= \begin{bmatrix} \mathbf{e}_1 \ \mathbf{e}_2 \ \dots \ \mathbf{e}_n \end{bmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_n \end{pmatrix} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n \end{bmatrix} \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_n' \end{pmatrix} \\ S_{\mathbf{v}} \frac{\mathbf{hvertfible}}{\mathbf{v}_1} \sin \mathbf{ce} \\ & S_{\mathbf{v}} \frac{\mathbf{hvertfible}}{\mathbf{v}_1} \sin \mathbf{c$$

Example. Take a point $\vec{\mathbf{x}} = (2,3)$ in \mathbb{R}^2 , thus $\vec{\mathbf{x}} = 2\mathbf{e}_1 + 3\mathbf{e}_2$. Take another basis $\mathbf{w}_1 = (2,1)^T$ and $\mathbf{w}_2 = (-1,2)^T$ for \mathbb{R}^2 . Find the corresponding coordinate of $\vec{\mathbf{x}}$ to this new basis $\{\mathbf{w}_1, \mathbf{w}_2\}$.

$$\begin{pmatrix} x_{1}' \\ x_{2}' \end{pmatrix} = S^{-1} \begin{pmatrix} 2 \\ 3 \end{pmatrix},$$
where $S = \begin{pmatrix} w_{1} & w_{2} \end{bmatrix}$

$$= \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix},$$
So $S^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}.$
Now, $\begin{pmatrix} x_{1}' \\ x_{2}' \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} N_{5} \\ N_{5} \end{pmatrix},$ New conductor to basis $\{w_{1}, w_{2}\}.$

$$\frac{check}{f} : \frac{2}{f} w_{1} + \frac{4}{f} w_{2} = \frac{2}{f} \binom{2}{i} + \frac{4}{f} \binom{-1}{2} = \binom{2}{3} = \frac{1}{2}$$

2. In \mathbb{R}^n , change coordinates from $\mathbf{v}_1, \dots, \mathbf{v}_n$ to $\mathbf{w}_1, \dots, \mathbf{w}_n$. Consider the vector $\vec{\mathbf{x}}$ in \mathbb{R}^n with the coordinate in a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$:

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right),$$

that is, $\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \cdots + x_n \mathbf{v}_n$.

Q: How do we find the coordinate of the same vector $\vec{\mathbf{x}}$ to the new basis $\mathbf{w}_1, \cdots, \mathbf{w}_n$?

$$\underbrace{\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}}_{\mathbf{v}_1, \cdots, \mathbf{v}_n} \longrightarrow \underbrace{\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}}_{\mathbf{w}_1, \cdots, \mathbf{w}_n}?$$

In other words, finding $(x_1', \cdots, x_n')^T$ such that

$$\vec{\mathbf{x}} = \underbrace{x_1 \mathbf{v}_1 + \cdots x_n \mathbf{v}_s}_{\mathbf{x}} = \underbrace{x_1 \mathbf{v}_1 + \cdots x_n \mathbf{v}_s}_{\mathbf{x}}$$

$$\begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_n \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_1 \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_n \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_1 \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_n \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \ \mathbf{v}_1 \cdots \mathbf{w}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix}$$

MATH 4

Example. Let $p(x) = 2x^2 + x + 1$, where $(2, 1, 1)^T$ is the coordinate of p in the monomial basis $\{x^2, x, 1\}$. Change the coordinate from the monomial basis $\{x^2, x, 1\}$ to the new basis $\{x^2 - x, x - 1, 1\}$ for $V = \mathcal{P}^{(2)}$. wefficient vector to {x2, x, 1} $p(x) = 2x^2 + x + 1$ $= 2\chi^{2} + \chi + i$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix},$ $(2 \\ 1)$ X² X $S = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ Su, $\begin{pmatrix} x_{i} \\ x_{2}' \\ y_{i}' \end{pmatrix} = 5^{-1} \begin{pmatrix} 2 \\ i \\ i \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ $p(x) = 2x^{2} + x + 1 = 2(x^{2} - x) + 3(x - 1) + 4 \cdot 1$ Check_:

2x²+x+1

3. A linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L[\mathbf{v}] = A\mathbf{v}$. Suppose $\mathbf{v}_1, \cdots, \mathbf{v}_n$ is basis for \mathbb{R}^n and $\mathbf{v}_1, \cdots, \mathbf{v}_n$ is a basis for \mathbb{R}^n .

Consider the vector $\vec{\mathbf{x}}$ in V with the coordinate in a basis $\mathbf{v}_1, \cdots, \mathbf{v}_n$:

that is, $\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \cdots + x_n \mathbf{v}_n$.

Q: How do we find the coordinate $(y_1, \dots, y_n)^T$ of the vector $L[\vec{\mathbf{x}}]$ to the basis $\mathbf{v}_1, \dots, \mathbf{v}_n$?

$$\vec{x} = x_1 \mathbf{v}_1 + \cdots x_n \mathbf{v}_n \longrightarrow \vec{y} = L[\vec{x}] = y_1 \mathbf{v}_1 + \cdots + y_n \mathbf{v}_n$$

$$May, \quad L[\vec{x}] = \lfloor \begin{bmatrix} x_1 v_1 + \cdots + x_n v_n \end{bmatrix}$$

$$= A \begin{bmatrix} x_1 v_1 + \cdots + x_n v_n \end{bmatrix}$$

$$= A \begin{bmatrix} v_1 \cdots v_n \end{bmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = ASx - \begin{pmatrix} 1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\vec{y} = L[\vec{x}] = y_1 v_1 + \cdots + y_n v_n = \begin{bmatrix} v_1 \cdots v_n \end{bmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$= Sy - 2$$

$$Thus, \quad (1) = (1)$$

$$ASx = Sy$$

$$= Sy - 2$$

$$\vec{y} = Sy - 2$$

Let A and B are $n \times n$ matrices. We say B is similar to A if there exists an invertible matrix S such that $B = S^{-1}AS$.

4. A linear operator $L : \mathbb{R}^n \to \mathbb{R}^m$, $L[\mathbf{v}] = A\mathbf{v}$.

Suppose $\mathbf{v}_1, \dots, \mathbf{v}_n$ is basis for \mathbb{R}^n and $\mathbf{w}_1, \dots, \mathbf{w}_m$ is a basis for \mathbb{R}^m . Consider the vector $\vec{\mathbf{x}}$ in V with the coordinate in a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$:

$$\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

that is, $\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \cdots + x_n \mathbf{v}_n$.

Q: How do we find the coordinate $(y_1, \dots, y_m)^T$ of the vector $L[\vec{\mathbf{x}}]$ to the basis $\mathbf{w}_1, \dots, \mathbf{w}_m$?

In general, we can conclude the following result.

Theorem: Suppose $L: V \to W$ is a linear operator, and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ form a basis of V, and $\mathbf{w}_1, \ldots, \mathbf{w}_m$ form a basis for W. We can write

$$\mathbf{v} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n \in V, \qquad \mathbf{w} = y_1 \mathbf{w}_1 + \dots + y_m \mathbf{w}_m \in W,$$

where $\mathbf{x} = (x_1, \dots, x_n)^T$ are the coordinates of \mathbf{v} relative to the basis of V and $\mathbf{y} = (y_1, \dots, y_m)^T$ are the coordinates of \mathbf{w} relative to the basis of W. Then in these coordinates, the linear function

 $L[\mathbf{v}] = \mathbf{w},$

 $B\mathbf{x} = \mathbf{y}$.

is given by multiplication by an $m \times n$ matrix B, and then

 $EX: L[\vec{x}] = A\vec{x}, A \in M_{m \times n}.$ $\begin{pmatrix} y_{i} \\ \vdots \\ y_{m} \end{pmatrix} = T^{-1}AS\begin{pmatrix} x_{i} \\ \vdots \\ x_{n} \end{pmatrix}.$ B^{-1}

Example. Suppose we have the operator $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$L[(\underline{x,y,z})^T] = \begin{pmatrix} \mathbf{I}x + \mathbf{I}y \\ \mathbf{I}y + \mathbf{I}z \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{I} & \mathbf{O} \\ \mathbf{O} & \mathbf{I} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix}$$

The matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ represents L in the standard basis $\begin{pmatrix} ie_1, e_2, e_3 \end{pmatrix}$ for \mathbb{R}^3 . **Q:** Consider the basis $\mathbf{v}_1 = (1, 0, 1)^T$, $\mathbf{v}_2 = (1, -1, 0)^T$, $\mathbf{v}_3 = (0, 1, -1)^T$ of \mathbb{R}^3 , and $\mathbf{w}_1 = (1, 1)^T$, $\mathbf{w}_2 = (-1, 1)^T$ of \mathbb{R}^2 . What would be the matrix representation of L in these bases?

$$S = \begin{bmatrix} V_{1} & V_{2} & V_{3} \end{bmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 5 & -1 \end{pmatrix},$$

$$T = \begin{bmatrix} W_{1} & W_{2} \end{bmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$

$$T^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$
matrix representation in basis $\begin{bmatrix} V_{1} & V_{1} & V_{1} \end{bmatrix},$ and $\begin{bmatrix} W_{1} & W_{3} \end{bmatrix}^{2}$;
$$B = T^{-1} A S = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$

$$U = \begin{bmatrix} V_{1} + OV_{2} + OV_{3} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 2 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix},$$

$$U = \begin{bmatrix} V_{1} + OV_{2} + OV_{3} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 2 & -1 & 1 \\ 0 & -1 & -1 \end{pmatrix},$$

$$U = \begin{bmatrix} V_{1} + OV_{2} + OV_{3} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 2 & -1 & 1 \\ 0 & -1 & -1 \end{pmatrix},$$

$$V_{1} = \begin{pmatrix} 1 & V_{1} + OV_{2} + OV_{3} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} & W_{2} \\ V_{2} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} & V_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2} \\ V_{3} & V_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & V_{1} + OW_{2}$$

*One reason for changing basis is that some coordinate systems are betteradapted for a particular operator L than others.

Example. Consider the operator

$$L[(x,y)^{T}] = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x - y \\ 5y - x \end{pmatrix}$$

Let's change basis to $\mathbf{w}_1 = (1, -1)^T$, $\mathbf{w}_2 = (1, 1)^T$. The matrix representation of L in these bases is

S¹AS =
$$[\mathbf{w}_1, \mathbf{w}_2]^{-1} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} [\mathbf{w}_1, \mathbf{w}_2]$$

= $\frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$
= $\begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix}$

$$B\begin{pmatrix} q \\ b \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} q \\ b \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ q & b \end{pmatrix}$$

• In other words, if $\mathbf{x} = a\mathbf{w}_1 + b\mathbf{w}_2$, then $L[\mathbf{x}] = 6a\mathbf{w}_1 + 4b\mathbf{w}_2$. So L scales along the direction of \mathbf{w}_1 by 6, and scales along the direction of \mathbf{w}_2 by 4.

• The simple geometry of *L* is only revealed by the new basis; it is not apparent from the matrix in the standard basis, $\begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$. $W_1 = I \cdot W_1 + D \cdot W_2$ $\begin{bmatrix} W_1 & W_2 \\ (0) \\ (0) \\ W_2 \\ (0) \\ B \\ (0) \\ B \\ (0) \\ B \\ (0) \\ (0) \\ B \\ (0) \\ ($

MATH 4242-Week 12-1

Spring 2020