Lecture 28: Quick review from previous lecture

- Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W. Then $\mathcal{L}(V, W)$ is a vector space.
- If $L: V \rightarrow W$ is a linear operator and $M: W \rightarrow Z$ is another linear operator, then we can define their composition $M \circ L: V \rightarrow Z$ by

$$
(M \circ L)[\mathbf{v}]=M[L[\mathbf{v}]] .
$$

- If $M: W \rightarrow V$ is an operator such that

$$
\begin{equation*}
M \circ L=I_{V}, \quad L \circ M=I_{W} \tag{1}
\end{equation*}
$$

where I_{V} is the identity map on V, and I_{W} is the identity map on W. Then we call L is invertible and W is the inverse of L and write $W=L^{-1}$.

Today we will discuss linear transformations.

- Lecture will be recorded -

- Midterm 2 will cover 2.5, Chapter 3, and 4.1-4.4. Details about Midterm 2 has been announced on Canvas. See category "Announcements".
- Solutions for HW 5 and HW 6 are posted on Canvas. Only the solutions of these two HWs will be provided since they cannot be returned in this semester due to the closure of the campus.
§ Change of Basis

1. In \mathbb{R}^{n}, change coordinates from $e_{1}, \cdots, \mathbf{e}_{n}$ to $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$.

Consider the vector $\overrightarrow{\mathbf{x}}$ in \mathbb{R}^{n} with the coordinate in the standard basis $\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}$:

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \begin{aligned}
E x= & =(2,3) m \mathbb{R}^{2} \\
& =2 e_{1}+3 e_{2} \\
& =2\binom{1}{0}+3\binom{0}{i} .
\end{aligned}
$$

that is, $\overrightarrow{\mathbf{x}}=x_{1} \mathbf{e}_{1}+\cdots x_{n} \mathbf{e}_{n}$.

Q: How do we find the coordinate of the same vector $\overrightarrow{\mathbf{x}}$ to the basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$?

$$
\left(\begin{array}{l}
x_{1} \\
x^{N}
\end{array} \quad\left(\begin{array}{l}
x_{1}^{\prime} \\
\text { card. } \text { to }_{0}
\end{array} v_{1}, \ldots, v_{n}\right\}\right.
$$

In other words, finding $\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right)^{T}$ such that

$$
\begin{aligned}
& \vec{x}=\underbrace{\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right]}_{I_{n}}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\dot{x}_{n}
\end{array}\right)=\underbrace{\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]}_{S}\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\dot{x}_{n}^{\prime} \\
\dot{x}_{n}^{\prime}
\end{array}\right)
\end{aligned}
$$

S. Avertible since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis,

Thus, we have $\left\{r_{1} \ldots, v_{n}\right\}$ are

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=S\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)
$$

which implies

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=S^{-1}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$ linearly independent.

Example. Take a point $\overrightarrow{\mathbf{x}}=(2,3)$ in \mathbb{R}^{2}, thus $\overrightarrow{\mathbf{x}}=2 \mathbf{e}_{1}+3 \mathbf{e}_{2}$. Take another basis $\mathbf{w}_{1}=(2,1)^{T}$ and $\mathbf{w}_{2}=(-1,2)^{T}$ for \mathbb{R}^{2}. Find the corresponding coordinate of $\overrightarrow{\mathbf{x}}$ to this new basis $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$.

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=S^{-1}\binom{2}{3} \text {, }
$$

where $S=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]$

$$
=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right) .
$$

so $\quad S^{-1}=\frac{1}{5}\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$.
Now, $\binom{x_{1}^{\prime}}{x_{i}^{2}}=\frac{1}{5}\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)\binom{2}{3}=\binom{1 / 5}{4 / 5}$, New coordinate to basis $\left\{\omega_{1}, \omega_{2}\right\}$.

Check:

$$
\begin{aligned}
\frac{7}{5} w_{1}+\frac{4}{5} w_{2} & =\frac{1}{5}\binom{2}{1}+\frac{4}{5}\binom{-1}{2} \\
& =\binom{2}{3}=\vec{x}
\end{aligned}
$$

2. In \mathbb{R}^{n}, change coordinates from $1, \cdots, \mathbf{v}_{n}$ to $\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}$. Consider the vector $\overrightarrow{\mathbf{x}}$ in \mathbb{R}^{n} with the coordinate in a basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

that is, $\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\cdots x_{n} \mathbf{v}_{n}$.

Q: How do we find the coordinate of the same vector $\overrightarrow{\mathbf{x}}$ to the new basis $\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}$?

$$
\underbrace{\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)}_{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}} \longrightarrow \underbrace{\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)}_{\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}} ?
$$

In other words, finding $\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right)^{T}$ such that

$$
\underbrace{\left[\begin{array}{lll}
\overrightarrow{\mathrm{x}}=x_{1} \mathbf{v}_{1}+\cdots x_{n} \mathbf{v}_{\mu} & x_{1}^{\prime} \mathbf{w}_{1}+\cdots x_{n}^{\prime} \mathbf{w}_{n}
\end{array}\right.}_{S}
$$

- $S, 7$ are invertible since $\left[v_{1}, \ldots, v_{n}\right\},\left\{\omega_{1}, \ldots, w_{n}\right\}$ ale basis for \mathbb{R}^{n}.

$$
\begin{aligned}
S x & =T y \\
\Rightarrow & y=T^{+1} S x
\end{aligned}
$$

Example. Let $p(x)=2 x^{2}+x+1$, where $(2,1,1)^{T}$ is the coordinate of p in the monomial basis $\left\{x^{2}, x, 1\right\}$. Change the coordinate from the monomial basis $\left\{x^{2}, x, 1\right\}$ to the new basis $\left\{x^{2}-x, x-1,1\right\}$ for $V=\mathcal{P}^{(2)}$.

$$
p(x)=2 x^{2}+x+1 \text {. wefficient vector to }\left[x^{2}, x, 1\right]
$$

$$
\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

So, $S=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$.

$$
\begin{aligned}
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right) & =S^{-1}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
\end{aligned}
$$

Check:

$$
p(x)=2 x^{2}+x+1=\frac{2\left(x^{2}-x\right)+3(x-1)+4 \cdot 1}{11} .
$$

3. A linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L[\mathbf{v}]=A \mathbf{v}$.

Suppose $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ is basis for \mathbb{R}^{n} and $\mathbf{v}_{1}, \cdots, \overleftarrow{\mathbf{v}}_{n}$ is a basis for \mathbb{R}^{n}.
Consider the vector $\overrightarrow{\mathbf{x}}$ in V with the coordinate in a basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:
that is, $\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\cdots x_{n} \mathbf{v}_{n}$.

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right),
$$

$$
\xrightarrow{L}(v)=\Delta v
$$

$$
y=\binom{y_{1}}{y_{n}}
$$

Q: How do we find the coordinate $\left(y_{1}, \cdots, y_{n}\right)^{T}$ of the vector $L[\overrightarrow{\mathbf{x}}]$ to the basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$?

$$
\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\cdots x_{n} \mathbf{v}_{n} \longrightarrow \overrightarrow{\mathbf{y}}=L[\overrightarrow{\mathbf{x}}]=y_{1} \mathbf{v}_{1}+\cdots+y_{n} \mathbf{v}_{n}
$$

Now,

Thus, (1) = (2).

$$
\begin{aligned}
A S x & =S y \\
\Rightarrow y & =S^{+1} A S^{B} x=B x .
\end{aligned}
$$

Let A and B are $n \times n$ matrices. We say B is similar to A if there exists an invertible matrix S such that $B=S^{-1} A S$.

$$
\begin{align*}
& L[\vec{x}]=L\left[x_{1} v_{1}+\ldots+x_{n} v_{n}\right] \\
& =A\left[x_{1} v_{1}+\ldots+x_{n} v_{n}\right] \\
& \left.=A\left[\begin{array}{ccc}
v_{1} & \ldots & v_{n} \\
v_{s} & \\
\hline
\end{array}\right] \begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=A S x .-(1) \\
& \vec{y}=L[\vec{x}]=y_{1} v_{1}+\ldots+y_{n} v_{n}=\underbrace{v_{1} \ldots v_{n}}_{S}] \frac{\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)}{y} \\
& =S y \tag{2}
\end{align*}
$$

4. A linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L[\mathbf{v}]=A \mathbf{v}$.

Suppose $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ is basis for \mathbb{R}^{n} and $\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}$ is a basis for \mathbb{R}^{m}.
Consider the vector $\overrightarrow{\mathbf{x}}$ in V with the coordinate in a basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

that is, $\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\cdots x_{n} \mathbf{v}_{n}$.

Q: How do we find the coordinate $\left(y_{1}, \cdots, y_{m}\right)^{T}$ of the vector $L[\overrightarrow{\mathbf{x}}]$ to the basis $\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}$?

$$
\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\cdots x_{n} \mathbf{v}_{n} \longrightarrow \overrightarrow{\mathbf{y}}=L[\overrightarrow{\mathbf{x}}]=y_{1} \mathbf{w}_{1}+\cdots+y_{m} \mathbf{w}_{m}
$$

similarly,
(1) $L[\vec{x}]=A S x$, where $S=\left[\begin{array}{lll}v_{1} & \ldots & v_{n}\end{array}\right]$

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
\dot{x}_{n}
\end{array}\right)
$$

(2)

$$
\begin{aligned}
& y=L[\vec{x}]=\underbrace{\left[\begin{array}{lll}
w_{1} & \cdots & w_{m}
\end{array}\right]}_{T}\left(\begin{array}{c}
y_{1} \\
i \\
y_{n}
\end{array}\right)=T, y \text {, where } \\
& y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
\end{aligned}
$$

Thus, (1) 2 :

$$
\begin{aligned}
A S_{x} & =T y . \\
\Rightarrow y & =T_{B}^{-1} A S x \\
y & =B x
\end{aligned}
$$

In general, we can conclude the following result.
Theorem: Suppose $L: V \rightarrow W$ is a linear operator, and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis of V, and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ form a basis for W. We can write

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n} \in V, \quad \mathbf{w}=y_{1} \mathbf{w}_{1}+\cdots+y_{m} \mathbf{w}_{m} \in W
$$

where $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{T}$ are the coordinates of \mathbf{v} relative to the basis of V and $\mathbf{y}=\left(y_{1}, \cdots, y_{m}\right)^{T}$ are the coordinates of \mathbf{w} relative to the basis of W. Then in these coordinates, the linear function

$$
L[\mathbf{v}]=\mathbf{w},
$$

is given by multiplication by an $m \times n$ matrix B, and then

$$
B \mathbf{x}=y .
$$

$$
\text { EX: } \begin{aligned}
L[\vec{x}] & =A \vec{x}, A \in M_{m \times n} . \\
\left(\begin{array}{c}
y_{1} \\
\vdots \\
u_{n}
\end{array}\right) & =\underbrace{T^{-1} A S}_{B}\binom{x_{1}}{x_{n}} .
\end{aligned}
$$

Example. Suppose we have the operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left[\left(\underline{(x, y, z)^{T}}\right]=\binom{1 x+1 y}{1 y+1 z}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right.
$$

Q: Consider the basis $\mathbf{v}_{1}=(1,0,1)^{T}, \mathbf{v}_{2}=(1,-1,0)^{T}, \mathbf{v}_{3}=(0,1,-1)^{T}$ of \mathbb{R}^{3}, and $\mathbf{w}_{1}=(1,1)^{T}, \mathbf{w}_{2}=(-1,1)^{T}$ of \mathbb{R}^{2}. What would be the matrix representation of L in these bases?

$$
\begin{aligned}
& S=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right) . \\
& T=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
& T^{-1}=\frac{1}{2}\binom{1}{-1}
\end{aligned}
$$

matin representation in basis $\left\{v_{1}, v_{2}, v_{3}\right\}$, and $\left\{w_{1}, w_{2}\right\}$:

$$
\begin{aligned}
B=T^{-1} A S & =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ccc}
2 & -1 & 1 \\
0 & -1 & -1
\end{array}\right)_{3 \times 2}
\end{aligned}
$$

\checkmark So applying B to the coefficients of a vector \mathbf{v} in the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ returns the coefficients of $L[\mathbf{v}]$ in the basis $\mathbf{w}_{1}, \mathbf{w}_{2}$.

Checks: $f\left[v_{1}\right]=A v_{1}=\binom{1}{1}$
$9=1 \cdot w_{1}+\underline{S}^{\operatorname{Sriir}} \mathrm{V}_{2}^{0020}$
*One reason for changing basis is that some coordinate systems are betteradapted for a particular operator L than others.
Example. Consider the operator

$$
, A
$$

$$
L\left[(x, y)^{T}\right]=\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\binom{x}{y}=\binom{5 x-y}{5 y-x}
$$

Let's change basis to $\underline{\mathbf{w}}_{1}=(1,-1)^{T}, \underline{\mathbf{w}}_{2}=(1,1)^{T}$. The matrix representation of L in these bases is

$$
\begin{aligned}
\mathbf{S}^{-1} A S= & {\left[\mathbf{w}_{1}, \mathbf{w}_{2}\right]^{-1}\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\left[\mathbf{w}_{1}, \mathbf{w}_{2}\right] } \\
\mathbf{B}^{\prime \prime} & =\frac{1}{2}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right)
\end{aligned}
$$

$$
B\binom{a}{b}=\left(\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right)\binom{a}{b}=\binom{6 a}{4 b}
$$

- In other words, if $\mathbf{x}=a \mathbf{w}_{1}+b \mathbf{w}_{2}$, then $L[\mathbf{x}]=6 a \mathbf{w}_{1}+4 b \mathbf{w}_{2}$. So L scales along the direction of \mathbf{w}_{1} by 6 , and scales along the direction of \mathbf{w}_{2} by 4 .
- The simple geometry of L is only revealed by the new basis; it is not apparent from the matrix in the standard basis, $\left(\begin{array}{rr}5 & -1 \\ -1 & 5\end{array}\right)$.
$\boldsymbol{W}_{\mathbf{1}}=\boldsymbol{l} \cdot \boldsymbol{W}_{\mathbf{1}}+\mathbf{0} \cdot \boldsymbol{W}_{\mathbf{2}}$

