
Lecture 28: Quick review from previous lecture

• Let L(V,W ) be the set of all linear functions L mapping from vector space V
to vector space W . Then L(V,W ) is a vector space.

• If L : V ! W is a linear operator and M : W ! Z is another linear operator,
then we can define their composition M � L : V ! Z by

(M � L)[v] = M [L[v]].

• If M : W ! V is an operator such that

M � L = IV , L �M = IW (1)

where IV is the identity map on V , and IW is the identity map on W . Then
we call L is invertible and W is the inverse of L and write W = L�1.

—————————————————————————————————
Today we will discuss linear transformations.

- Lecture will be recorded -

—————————————————————————————————

• Midterm 2 will cover 2.5, Chapter 3, and 4.1 - 4.4. Details about Midterm 2
has been announced on Canvas. See category ”Announcements”.

• Solutions for HW 5 and HW 6 are posted on Canvas. Only the solutions of
these two HWs will be provided since they cannot be returned in this semester
due to the closure of the campus.
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§ Change of Basis

1. In Rn
, change coordinates from e1, · · · , en to v1, · · · ,vn.

Consider the vector ~x in Rn with the coordinate in the standard basis e1, · · · , en:
0

@
x1
...
xn

1

A ,

that is, ~x = x1e1 + · · · xnen.

Q: How do we find the coordinate of the same vector ~x to the new basis v1, · · · ,vn?
0

@
x1
...
xn

1

A

| {z }
e1,··· ,en

�!

0

@
x01
...
x0n

1

A

| {z }
v1,··· ,vn

?

In other words, finding (x01, · · · , x0n)T such that

~x = x1e1 + · · · xnen = x01v1 + · · · x0nvn.
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Example. Take a point ~x = (2, 3) in R2, thus ~x = 2e1 + 3e2. Take another basis
w1 = (2, 1)T and w2 = (�1, 2)T for R2. Find the corresponding coordinate of ~x
to this new basis {w1,w2}.
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2. In Rn
, change coordinates from v1, · · · ,vn to w1, · · · ,wn.

Consider the vector ~x in Rn with the coordinate in a basis v1, · · · ,vn:
0

@
x1
...
xn

1

A ,

that is, ~x = x1v1 + · · · xnvn.

Q:How do we find the coordinate of the same vector ~x to the new basisw1, · · · ,wn?
0

@
x1
...
xn

1

A

| {z }
v1,··· ,vn

�!

0

@
x01
...
x0n

1

A

| {z }
w1,··· ,wn

?

In other words, finding (x01, · · · , x0n)T such that

~x = x1v1 + · · · xnvn = x01w1 + · · · x0nwn.
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Example. Let p(x) = 2x2 + x + 1, where (2, 1, 1)T is the coordinate of p in
the monomial basis {x2, x, 1}. Change the coordinate from the monomial basis
{x2, x, 1} to the new basis {x2 � x, x� 1, 1} for V = P (2).
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3. A linear operator L : Rn ! Rn
, L[v] = Av.

Suppose v1, · · · ,vn is basis for Rn and v1, · · · ,vn is a basis for Rn.
Consider the vector ~x in V with the coordinate in a basis v1, · · · ,vn:

0

@
x1
...
xn

1

A ,

that is, ~x = x1v1 + · · · xnvn.

Q: How do we find the coordinate (y1, · · · , yn)T of the vector L[~x] to the basis
v1, · · · ,vn?

~x = x1v1 + · · · xnvn �! ~y = L[~x] = y1v1 + · · · + ynvn

Let A and B are n⇥ n matrices. We say B is similar to A if there exists an
invertible matrix S such that B = S�1AS.

MATH 4242-Week 12-1 6 Spring 2020

=

¥i
-

Now, LCI] =L ( x, v. t - - thru ]
= A [ x. r, t . - - thru ]

-
- AE I !÷! -- Asx .

-①
j -- LEI] = Y , h t- -t Yura = [

y

Thus
, ① =② .

= Sy -①

AS × =

Kgb = Bx
.

⇒ y = ISLAS x
.



4. A linear operator L : Rn ! Rm
, L[v] = Av.

Suppose v1, · · · ,vn is basis for Rn and w1, · · · ,wm is a basis for Rm.
Consider the vector ~x in V with the coordinate in a basis v1, · · · ,vn:

0

@
x1
...
xn

1

A ,

that is, ~x = x1v1 + · · · xnvn.

Q: How do we find the coordinate (y1, · · · , ym)T of the vector L[~x] to the basis
w1, · · · ,wm?

~x = x1v1 + · · · xnvn �! ~y = L[~x] = y1w1 + · · · + ymwm
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In general, we can conclude the following result.

Theorem: Suppose L : V ! W is a linear operator, and v1, . . . ,vn form a
basis of V , and w1, . . . ,wm form a basis for W . We can write

v = x1v1 + · · · + xnvn 2 V, w = y1w1 + · · · + ymwm 2 W,

where x = (x1, · · · , xn)T are the coordinates of v relative to the basis of V and
y = (y1, · · · , ym)T are the coordinates of w relative to the basis of W . Then in
these coordinates, the linear function

L[v] = w,

is given by multiplication by an m⇥ n matrix B, and then

Bx = y.
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Example. Suppose we have the operator L : R3 ! R2 given by

L[(x, y, z)T ] =

✓
x + y
y + z

◆

The matrix A =

✓
1 1 0
0 1 1

◆
represents L in the standard basis.

Q: Consider the basis v1 = (1, 0, 1)T , v2 = (1,�1, 0)T , v3 = (0, 1,�1)T of R3,
and w1 = (1, 1)T , w2 = (�1, 1)T of R2. What would be the matrix representation
of L in these bases?

X So applying B to the coe�cients of a vector v in the basis v1,v2,v3 returns
the coe�cients of L[v] in the basis w1,w2.
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*One reason for changing basis is that some coordinate systems are better-
adapted for a particular operator L than others.
Example. Consider the operator

L[(x, y)T ] =

✓
5 �1

�1 5

◆✓
x
y

◆
=

✓
5x� y
5y � x

◆

Let’s change basis to w1 = (1,�1)T , w2 = (1, 1)T . The matrix representation
of L in these bases is

[w1,w2]
�1

✓
5 �1

�1 5

◆
[w1,w2]

=
1

2

✓
1 �1
1 1

◆✓
5 �1

�1 5

◆✓
1 1

�1 1

◆

=

✓
6 0
0 4

◆

• In other words, if x = aw1 + bw2, then L[x] = 6aw1 + 4bw2. So L scales
along the direction of w1 by 6, and scales along the direction of w2 by 4.

• The simple geometry of L is only revealed by the new basis; it is not apparent

from the matrix in the standard basis,

✓
5 �1

�1 5

◆
.
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