
Lecture 29: Quick review from previous lecture

• Theorem: Suppose L : V ! W is a linear operator, and v1, . . . ,vn form a
basis of V , and w1, . . . ,wm form a basis for W . We can write

v = x1v1 + · · · + xnvn 2 V, w = y1w1 + · · · + ymwm 2 W,

where x = (x1, · · · , xn)T are the coordinates of v relative to the basis of V
and y = (y1, · · · , ym)T are the coordinates of w relative to the basis of W .
Then in these coordinates, the linear function

L[v] = w,

is given by multiplication by an m⇥ n matrix B, and then

Bx = y.

—————————————————————————————————
Today we will discuss eigenvalues and eigenfunctions.

- Lecture will be recorded -

—————————————————————————————————

• Midterm 2 will cover 2.5, Chapter 3, and 4.1 - 4.4. Details about Midterm 2
has been announced on Canvas. See category ”Announcements”.
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Example. Let V = P (2), the vector space of polynomials of degree  2; W =
P (1), the vector space of polynomials of degree  1; and

L[p](x) = p0(x).

Consider the basis {x2, x, 1} for V and the basis for {x, 1} for W . Find the matrix
representation of L in these bases.

*Note that the matrix A that represents L depends on the choice of basis for V
and W !
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Example. Again, we consider the linear operator L : V ! W defined by

L[p](x) = p0(x).

Suppose that instead of the monomial basis for V and W , we had instead used the
basis {x2 � x, x� 1, 1} for V = P (2) and {2x, 1} for W = P (1). Find the matrix
representation of L in these bases.
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§ Canonical Form of the operator L.

We take any matrix A = Am⇥n. Suppose the rank of A is r. Let L[x] = Ax.
Let v1, . . . ,vr be a basis for coimgA, and vr+1, . . . ,vn a basis for kerA, the

orthogonal complement. So v1, . . . ,vn are a basis for Rn.
As we’ve seen,

{w1 = Av1, . . . ,wr = Avr} is a basis for imgA.

Take wr+1, . . . ,wm to be any basis for cokerA. Then

{w1, . . . ,wr,wr+1, · · ·wm} is a basis for Rm.

Q: What is the matrix for L in the bases v1, . . . ,vn of Rn and w1, . . . ,wm of Rm?

* In other words, the top r-by-r block is the identity, and everywhere else it has
0. This is the canonical form of the operator L, that depends “only” on its rank.
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Example. Let the operator L[x] = Ax, where

A =

0

@
1 2
2 4

�1 �2

1

A .

Find the canonical form of the operator L[x] = Ax.
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Chapter 8 Eigenvalues and Singular Values

We will discuss 8.2, 8.3, 8.5, and 8.7.

8.2 Eigenvalues and Eigenvectors

As we will see, eigenvectors are a natural basis for expressing the action of sym-
metric linear operators.

Definition: If A = An⇥n is a square matrix, we say that a scalar � is an
eigenvalue of A if there is a non-zero vector v 6= 0 satisfying

Av = �v

If � is an eigenvalue, we say a vector v 6= 0 satisfying Av = �v is an
eigenvector.

*Important: The zero vector 0 is not allowed to be an eigenvector, by defini-
tion.

Properties:

• In geometric terms, the eigenvectors ofA are those vectors that are stretched/scaled
by A.

• The eigenvalue � is the amount by which the eigenvector v is stretched.

• Note that even though v 6= 0, we may have � = 0.
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§ How to find eigenvalues and eigenvectors. Let’s rewrite the equations
Av = �v into

(A� �I)v = 0, (1)

where I is the identity matrix.
Clearly, it is a homogeneous linear system, and thus v = 0 is a solution of (1).

Q: How to find its nonzero solutions (eigenvectors v)?

In other words, the eigenvectors v with eigenvalue � are the non-zero vectors in
the kernel of A� �I .

Thus, we have the following fact.

Fact 1: A scalar � is an eigenvalue of n⇥ n matrix A if and only if A� �I is
singular (rankA < n).

From Fact 1, we immediately have

Fact 2: A scalar � is an eigenvalue of n ⇥ n matrix A if and only if � is a
solution to the characteristic equation

det(A� �I) = 0.

We define
pA(�) = det(A� �I),

the eigenvalues of A are the roots of pA(�), i.e. the values � at which pA(�) = 0.
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Example. Find eigenvalues and eigenvectors. Let A =

✓
1 �1

�2 0

◆
.

Remark: If v is an eigenvector A for the eigenvalue �, then so is every nonzero
scalar multiple of v, that is, cv for scalar c 6= 0.
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