Lecture 29: Quick review from previous lecture

- Theorem: Suppose $L: V \rightarrow W$ is a linear operator, and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis of V, and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ form a basis for W. We can write

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n} \in V, \quad \mathbf{w}=\underline{y_{1}} \mathbf{w}_{1}+\cdots+\underline{y}_{m} \mathbf{w}_{m} \in W
$$

where $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{T}$ are the coordinates of \mathbf{v} relative to the basis of V and $\mathbf{y}=\left(\underline{y_{1}}, \cdots, \underline{y_{m}}\right)^{T}$ are the coordinates of \mathbf{w} relative to the basis of W. Then in these coordinates, the linear function

$$
L[\mathbf{v}]=\mathbf{w},
$$

is given by multiplication by an $m \times n$ matrix B, and then

$$
[B]_{y}=y .
$$

Today we will discuss eigenvalues and eigenfunctions.

$$
\begin{aligned}
& \begin{array}{l}
\text { Basis } \\
\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
\end{array} \quad L[v]=A_{v}
\end{aligned}
$$

Then the matrix representation of L in these bases is

$$
B=T^{-1} A S
$$

where $S=\left[\begin{array}{lll}v_{1} & \ldots & v_{n}\end{array}\right], \quad T=\left[\begin{array}{lll}w_{1} & \ldots & w_{m}\end{array}\right]$.

- Lecture will be recorded -
- Midterm 2 will cover 2.5, Chapter 3, and 4.1-4.4. Details about Midterm 2 has been announced on Canvas. See category "Announcements".

Example. Let $V=\mathcal{P}^{(2)}$, the vector space of polynomials of degree $\leq 2 ; W=$ $\mathcal{P}^{(1)}$, the vector space of polynomials of degree ≤ 1; and

$$
L[p](x)=p^{\prime}(x) .
$$

Consider the basis $\left\{x^{2}, x, 1\right\}$ for V and the basis for $\{x, 1\}$ for W. Find the matrix representation of L in these bases.

$$
\underset{\left\{x^{2}, x, 1\right\}}{p^{(2)}} \xrightarrow{L} \begin{gathered}
p^{(1)} \\
\{x, 1\}
\end{gathered}
$$

$$
\begin{aligned}
& p(x) \\
& =a x^{2}+b x+c \\
&
\end{aligned}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \quad p^{\prime}(x)=2 a x+b,\binom{2 a}{b}
$$

$$
L\left[x^{2}\right]=2 x=2 \sqrt{x}+0 \cdot r
$$

$$
L[x]=1=0 x+1 \cdot 1
$$

$$
L[1]=0=0 x+0 \cdot 1
$$

Thus, L in these bases is $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.

Obsenationi
*Note that the matrix A that represents L depends on the choice of basis for V and W !

Example. Again, we consider the linear operator $L: V \rightarrow W$ defined by

$$
L[p](x)=p^{\prime}(x)
$$

Suppose that instead of the monomial basis for V and W, we had instead used the basis $\left\{x^{2}-x, x-1,1\right\}$ for $V=\mathcal{P}^{(2)}$ and $\{2 x, 1\}$ for $W=\mathcal{P}^{(1)}$. Find the matrix representation of L in these bases.

$$
\begin{aligned}
& \text { of } L \text { in these bases. } \\
& \left\{x^{2}-x, x-1,1\right\}
\end{aligned}
$$

From the previous example, $L[p]=\left[\begin{array}{lll}2 & A & 0 \\ 0 & 1 & 0\end{array}\right]\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$. in these bases $\left\{x^{2}, x, 1\right\}$ and $\{x, 1\}$.

$$
\text { and } T=\left(\begin{array}{cc}
\downarrow & \sqrt{2} \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

$$
x^{2}-x=1\left(x^{2}-x\right)+0(x-1)+0.1
$$

$$
\begin{aligned}
& B=T^{-1} A S \text { where } \\
& S=\left(\right) \\
& 2 x=2(x)+0(1) \\
& x^{2}-x=1 x^{2}+(-1) x+0.1 \quad x-1=0 x^{2}+1(x)-1.1 \\
& v_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \\
& \text { So, } B=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \text {. } \\
& =\left(\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right)\right. \text {. }
\end{aligned}
$$

\S Canonical Form of the operator L.

We take any matrix $A=A_{m \times n}$. Suppose the rank of A is r. Let $L[\mathbf{x}]=A \mathbf{x}$.
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be a basis for coimg A, and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}$ a basis for $\operatorname{ker} A$, the orthogonal complement. So $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are a basis for \mathbb{R}^{n}.

As we've seen,

$$
\left\{\mathbf{w}_{1}=A \mathbf{v}_{1}, \ldots, \mathbf{w}_{r}=A \mathbf{v}_{r}\right\} \quad \text { is a basis for mg } A .
$$

Take $\mathbf{w}_{r+1}, \ldots, \mathbf{w}_{m}$ to be any basis for cover A. Then
$\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{w}_{r+1}, \cdots \mathbf{w}_{m}\right\} \quad$ is a basis for \mathbb{R}^{m}.
Q: What is the matrix for L in the bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \mathbb{R}^{n} and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ of \mathbb{R}^{m} ?

(1).

$$
\begin{aligned}
& L\left[v_{i}\right]=A v_{i}=1 w_{i}, \quad 1 \leq i \leq r \\
& L\left[v_{j}\right]=A v_{j}=0, j>r \\
& \underline{E x}: L\left[v_{1}\right]=1 w_{1}+0 w_{2}+\ldots+0 w_{m}
\end{aligned}
$$

$$
L\left[v_{2}\right]=0 w_{1}+1 w_{2}+\cdots+o w_{m}
$$

${ }^{0 r}(2) S=\left[\begin{array}{lll}v, \ldots & v_{n}\end{array}\right], \quad T=\left[w_{1}, \ldots w_{n}\right] . \quad B=T^{-1} A S=\left(\begin{array}{ll}\frac{I r}{0} & 0 \\ 0 & 0\end{array}\right)_{m \times n}$

* In other words, the top r-by- r block is the identity, and everywhere else it has 0 . This is the canonical form of the operator L, that depends "only" on its rank.

Example. Let the operator $L[\mathbf{x}]=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rr}
1 & 2 \\
2 & 4 \\
-1 & -2
\end{array}\right)
$$

Find the canonical form of the operator $L[\mathbf{x}]=A \mathbf{x}$.
Find basis for cong $A: A \rightarrow\left(\begin{array}{ll}1 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\right)$.

$$
\operatorname{coing} A=\operatorname{span}\left\{\binom{1}{2}\right\}
$$

Find basis for ter A : $\left[v_{2}=\binom{-2}{1}\right]$. Find bass tor comer $\left.\left.A=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 11\end{array}\right), \begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right)\right]$.
Basis for ing $A=\left\{\begin{array}{l}\left.A v_{1}=\left(\begin{array}{c}5 \\ 10 \\ -5\end{array}\right)\right\} \\ \omega_{1}^{\prime}\end{array}\right.$
Now, we have $S=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right], T=\left[\begin{array}{lll}w_{1} & w_{2} & w_{3}\end{array}\right]$.

$$
B=T^{-1} A S=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)_{3 \times 2}
$$

or we can also find B by

$$
\begin{aligned}
& A\left[v_{1}\right]=1 w_{1}=1 w_{1}+0 w_{2}+0 w_{3} \\
& A\left[v_{2}\right]=0=0 w_{1}+0 w_{2}+0 w_{3}
\end{aligned}
$$

Thus, $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$
MATH 4242-Week 12-2 Remark: We caw rewrite $A=T B S_{\text {Spring } 2020}^{-1}$
So we can "factorize $A^{\prime \prime}$ into $T B S^{-1}$. 执.

Chapter 8 Eigenvalues and Singular Values

We will discuss 8.2, 8.3, 8.5, and 8.7.

8.2 Eigenvalues and Eigenvectors

As we will see, eigenvectors are a natural basis for expressing the action of symmetric linear operators.

Definition: If $A=A_{n \times n}$ is a square matrix, we say that a scalar λ is an eigenvalue of A if there is a non-zero vector $\mathbf{v} \neq \mathbf{0}$ satisfying

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

If λ is an eigenvalue, we say a vector $\mathbf{v} \neq \mathbf{0}$ satisfying $A \mathbf{v}=\lambda \mathbf{v}$ is an eigenvector.
*Important: The zero vector $\mathbf{0}$ is not allowed to be an eigenvector, by definiion.

Properties:

- In geometric terms, the eigenvectors of A are those vectors that are stretched/scaled by A.
- The eigenvalue λ is the amount by which the eigenvector \mathbf{v} is stretched.
- Note that even though $\mathbf{v} \neq \mathbf{0}$, we may have $\lambda=0$.

When $\lambda=0, \quad A \stackrel{\not v^{0}}{v}=0 v=0$.
Thus it can happen if $\underset{u_{4}}{v} \in \operatorname{ker} A$
§ How to find eigenvalues and eigenvectors. Let's rewrite the equations $A \mathbf{v}=\lambda \mathbf{v}$ into =

$$
\begin{equation*}
(A-\lambda I) \mathbf{v}=\mathbf{0}, \tag{1}
\end{equation*}
$$

where I is the identity matrix.
Clearly, it is a homogeneous linear system, and thus $\mathbf{v}=\underline{\underline{\mathbf{0}}}$ is a solution of (1).
Q: How to find its nonzero solutions (eigenvectors \mathbf{v})?

In other words, the eigenvectors \mathbf{v} with eigenvalue λ are the non-zero vectors in the kernel of $A-\lambda I$.

A-XI is NOT full rank.

Thus, we have the following fact.
Fact 1: A scalar λ is an eigenvalue of $n \times n$ matrix A if and only if $A-\lambda I$ is singular (rata). $\operatorname{rank}(A-n I)<n$.

From Fact 1, we immediately have
Fact 2: A scalar λ is an eigenvalue of $n \times n$ matrix A if and only if λ is a solution to the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

We define

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I) \text {, polynomial of degree } n \text {. }
$$

the eigenvalues of A are the roots of $p_{A}(\lambda)$, i.e. the values λ at which $p_{A}(\lambda)=0$.

Example. Find eigenvalues and eigenvectors. Let $A=\left(\begin{array}{rr}1 & -1 \\ -2 & 0\end{array}\right)$.

$$
\text { (1) } \begin{aligned}
O & =\operatorname{det}(A-\lambda I) \\
& =\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -1 \\
-2 & -\lambda
\end{array}\right) \\
& =(1-\lambda)(-\lambda)-2=(\lambda+1)(\lambda-2) .
\end{aligned}
$$

So, $\lambda=-1,2$. eigen values.
(2) Find eigenvectors. (Find $\operatorname{ker}(A-\lambda I)$).

$$
\begin{aligned}
& \lambda=-1: \quad A-\lambda I=A+I=\left(\begin{array}{cc}
2 & -1 \\
-2 & 1
\end{array}\right) \text {. } \\
& \left(\begin{array}{cc}
2 & -1 \\
-2 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \text {. } \\
& A \rightarrow\left(\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right) . \quad\left(\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} .\binom{x}{y}=\binom{1}{2} \\
& \lambda=2: A-2 I=\left(\begin{array}{ll}
-1 & -1 \\
-2 & -2
\end{array}\right) .\left(\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right) . \\
& \left(\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Rightarrow\binom{x}{y}=\binom{1}{-1} .
\end{aligned}
$$

Remark: If \mathbf{v} is an eigenvector A for the eigenvalue λ, then so is every nonzero scalar multiple of \mathbf{v}, that is, $c \mathbf{v}$ for scalar $c \neq 0$.

