Lecture 29: Quick review from previous lecture

• **Theorem:** Suppose $L: V \to W$ is a linear operator, and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ form a basis of V, and $\mathbf{w}_1, \ldots, \mathbf{w}_m$ form a basis for W. We can write

$$\mathbf{v} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n \in V, \qquad \mathbf{w} = y_1 \mathbf{w}_1 + \dots + y_m \mathbf{w}_m \in W,$$

where $\mathbf{x} = (x_1, \dots, x_n)^T$ are the coordinates of \mathbf{v} relative to the basis of Vand $\mathbf{y} = (y_1, \dots, y_m)^T$ are the coordinates of \mathbf{w} relative to the basis of W. Then in these coordinates, the linear function

$$L[\mathbf{v}] = \mathbf{w},$$

 $\mathbf{x} = \mathbf{y}.$

is given by multiplication by an $m \times n$ matrix B, and then

Today we will discuss eigenvalues and eigenfunctions.
Basis
$$L[v] = Av$$

 $\{v_1, v_2, \dots, v_n\}$ $\{w_1, \dots, w_m\}$
Then the matrix representation of L in these bases is
 $B = T^{T}AS$.
where $S = [v_1 \dots v_n]$, $T = [w_1 \dots w_m]$.
- Lecture will be recorded -

• Midterm 2 will cover 2.5, Chapter 3, and 4.1 - 4.4. Details about Midterm 2 has been announced on Canvas. See category "Announcements".

Example. Let $V = \mathcal{P}^{(2)}$, the vector space of polynomials of degree ≤ 2 ; $W = \mathcal{P}^{(1)}$, the vector space of polynomials of degree ≤ 1 ; and

L[p](x) = p'(x).

Consider the basis $\{x^2, x, 1\}$ for V and the basis for $\{x, 1\}$ for W. Find the matrix representation of L in these bases.

$$p^{(2)} \xrightarrow{L} p^{(1)} {x, 1} {x, 1}$$

*Note that the matrix A that represents L depends on the choice of basis for V and W!

Example. Again, we consider the linear operator $L: V \to W$ defined by

$$L[p](x) = p'(x).$$

Suppose that instead of the monomial basis for V and W, we had instead used the basis $\{x^2 - x, x - 1, 1\}$ for $V = \mathcal{P}^{(2)}$ and $\{2x, 1\}$ for $W = \mathcal{P}^{(1)}$. Find the matrix representation of L in these bases. or L in these bases. L-> (2×, 1] From the previous example, $L[P] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} g \\ g \end{pmatrix}$ in these bases [x²,x,1] and [x,1] QX = 2(x) + O(1) $S = T^{T}AS$, where $S = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ B= T + AS, where 1=0 X+1·1 $|x-| = 0x^{2} + 1(x) - 1 \cdot |$ $X^{2}-X = | X^{2}+(-1)X + 0.|$ $V_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $B = \binom{20}{31}^{-1} \binom{200}{313} \binom{100}{-11} \binom{100}{313}$ 50, $= \left(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right) .$ $\frac{1}{\left\{x^{2}-x, x-1, 1\right\}} + \frac{1}{\left\{x^{2}-x, x-1, 1\right\}} + \frac{1}{\left\{x^{2}-x, x-1, 1\right\}} + \frac{1}{\left\{x^{2}-x, x-1, 1\right\}}$ Obsenation: $B_{(1)} = (-1), 22 - 1(1)$ $\frac{B}{1} \mathcal{B}(\binom{o}{b}) = \binom{o}{1}, o(2x)$ MATH 4242-Week 12-2 Spring 2020

Canonical Form of the operator L. δ

We take any matrix $A = A_{m \times n}$. Suppose the rank of A is r. Let $L[\mathbf{x}] = A\mathbf{x}$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be a basis for coimg A, and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ a basis for ker A, the orthogonal complement. So $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are a basis for \mathbb{R}^n .

As we've seen,

 $\{\mathbf{w}_1 = A\mathbf{v}_1, \dots, \mathbf{w}_r = A\mathbf{v}_r\}$ is a basis for img A.

Take $\mathbf{w}_{r+1}, \ldots, \mathbf{w}_m$ to be any basis for coker A. Then

 $\{\mathbf{w}_1,\ldots,\mathbf{w}_r,\mathbf{w}_{r+1},\cdots,\mathbf{w}_m\}$ is a basis for \mathbb{R}^m .

Q: What is the matrix for L in the bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \mathbb{R}^n and $\mathbf{w}_1, \ldots, \mathbf{w}_m$ of \mathbb{R}^m ? Rm IR comg B ker A [Vr+1,..., Vn] { \(\, ..., \\\)} 0 $L[V_i] = AV_i = |W_i|, i \le i \le r$ * In other words, the top r-by-r block is the identity, and everywhere else it has \overrightarrow{F}

0. This is the **canonical form** of the operator L, that depends "only" on its rank.

Example. Let the operator $L[\mathbf{x}] = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & 2\\ 2 & 4\\ -1 & -2 \end{pmatrix}.$$

Find the canonical form of the operator $L[\mathbf{x}] = A\mathbf{x}$. Tind basis for coing $A : A \longrightarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$. coing $A = span \left\{ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right\}$ Find basis for <u>ber $A : \left\{ v_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$ </u>. Find basis for <u>color $A : \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$ </u>. Basis for ing $A = \left\{ Av_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$

Now, we have $S = [V_1 \ V_2], T = [W_1 \ W_3]$. $B = T^{-1}AS = \binom{10}{00}_{3\times 2}$.

$$\underbrace{\forall r} \quad we \quad can \quad also \quad find \quad B \quad b_{r} \\ A[u_{1}] = |w_{1}| = |w_{1}| + 0 \quad w_{2} \quad \tau_{0} \, w_{1} \\ A[v_{1}] = 0 \quad = 0 \quad w_{1} + \quad 0 \quad w_{2} + 0 \quad w_{3} \\ A[v_{1}] = 0 \quad = 0 \quad w_{1} + \quad 0 \quad w_{2} + 0 \quad w_{3} \\ Thus, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}_{R}$$

MATH 4242-Week 12-2 Remark: We can rewrite $A = TBS_{\text{Spring 2020}}^{-1}$ So we can 'factorize A"mo TBS'. #.

Chapter 8 Eigenvalues and Singular Values

We will discuss 8.2, 8.3, 8.5, and 8.7.

8.2 Eigenvalues and Eigenvectors

As we will see, eigenvectors are a natural basis for expressing the action of symmetric linear operators.

Definition: If $A = A_{n \times n}$ is a square matrix, we say that a scalar λ is an **eigenvalue** of A if there is a non-zero vector $\mathbf{v} \neq \mathbf{0}$ satisfying

 $A\mathbf{v} = \lambda \mathbf{v}$

If λ is an eigenvalue, we say a vector $\mathbf{v} \neq \mathbf{0}$ satisfying $A\mathbf{v} = \lambda \mathbf{v}$ is an **eigenvector**.

*Important: The zero vector $\mathbf{0}$ is **not** allowed to be an eigenvector, by definition.

Properties:

- In geometric terms, the eigenvectors of A are those vectors that are stretched/scaled by A.
- The eigenvalue λ is the amount by which the eigenvector **v** is stretched.
- Note that even though $\mathbf{v} \neq \mathbf{0}$, we may have $\lambda = 0$.

when
$$\Lambda = 0$$
, $A = 0 = 0$.
Thus it can happen if $v \in \ker A$.

§ How to find eigenvalues and eigenvectors. Let's rewrite the equations $A\mathbf{v} = \lambda \mathbf{v}$ into

$$(A - \lambda I)\mathbf{v} = \mathbf{0},\tag{1}$$

where I is the identity matrix.

Clearly, it is a homogeneous linear system, and thus $\mathbf{v} = \mathbf{0}$ is a solution of (1).

Q: How to find its <u>nonzero solutions</u> (eigenvectors \mathbf{v})?

In other words, the eigenvectors \vec{v} with eigenvalue λ are the non-zero vectors in the kernel of $A - \lambda I$. $A - \lambda I$ is $\lambda \delta T$ full rank.

Thus, we have the following fact.

Fact 1: A scalar λ is an eigenvalue of $n \times n$ matrix A if and only if $A - \lambda I$ is singular (rank $A \leq n$).

rank (A-NI)< N.

From Fact 1, we immediately have

Fact 2: A scalar λ is an eigenvalue of $n \times n$ matrix A if and only if λ is a solution to the **characteristic equation**

 $\det(A - \lambda I) = 0.$

We define

$$p_A(\lambda) = \det(A - \lambda I),$$

the eigenvalues of A are the **roots** of $p_A(\lambda)$, i.e. the values λ at which $p_A(\lambda) = 0$.

Example. Find eigenvalues and eigenvectors. Let
$$A = \begin{pmatrix} 1 & -1 \\ -2 & 0 \end{pmatrix}$$
.
(1) $O = \det (A - \lambda I)$
 $= \det \begin{pmatrix} 1 - \lambda & -1 \\ -2 & -\lambda \end{pmatrix}$
 $= (1 - \lambda) (-\lambda) - 2 = (\lambda + 1) (\lambda - 2)$.
So, $\lambda = -1$, Z. eigen values.
(2) End engen vectors. (Find ker $(A - \lambda I)$).
 $\underline{\lambda = -1}$: $A - \lambda I = A + I = \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix}$.
 $\begin{pmatrix} \lambda = -1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
 $A \rightarrow \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$.
 $\underline{\lambda = 2}$: $A - 2I = \begin{pmatrix} -1 & -1 \\ -2 & -2 \end{pmatrix}$. $\Rightarrow \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}$.
 $\begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
 $\begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
 $\begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Remark: If **v** is an eigenvector A for the eigenvalue λ , then so is every nonzero scalar multiple of **v**, that is, $c\mathbf{v}$ for scalar $c \neq 0$.

MATH 4242-Week 12-2