Lecture 31: Quick review from previous lecture

- A and A^{T} has the same eigenvalues.
- $\operatorname{tr}(A)^{(\mathrm{dff})} \sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}$. (2) $\underline{\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n} .}$
- If $\lambda_{1}, \ldots, \lambda_{k}$ are pairwise distinct eigenvalues of A, then the corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent.
- An eigenvalue λ of a matrix A is complete if the number of linearly independent(eigenvectors) with eigenvalue λ is equal to the multiplicior of λ.

Today we will discuss Diagonalization.

- Lecture will be recorded -
- Solutions for Midterm 2 has been posted on Canvas, see "Announcements".

Example.

- $A=\left(\begin{array}{ll}c & 1 \\ 0 & c\end{array}\right)$ has only one eigenvalue (C) with multiplicity 2, with only one eigenvector $(1,0)^{T}$. Its eigenvalue c is NOT a complete eigenvalue.

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
c-\lambda & 1 \\
0 & c-\lambda
\end{array}\right)=\left((-\lambda)^{2}\right.
$$

$$
A-c I=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \operatorname{Ker}(A-c I)=\operatorname{span}\left\{\binom{1}{0}\right\}=U_{c} \text {, eigenspace }
$$

- On the other hand, the matrix $B=\left(\begin{array}{cc}c & 0 \\ 0 & c\end{array}\right)$ also has only one eigenvalue c with multiplicity 2 , but it had two linearly independent eigenvectors $(1,0)^{T}$ and $(0,1)^{T}$ (and any non-zero linear combination of these). Its eigenvalue c is a complete eigenvalue.

$$
\begin{aligned}
& 0=\operatorname{det}(B-\lambda I)=(C-\lambda)^{2} . \\
& B-c I=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \operatorname{Ker}(B-c I) \text { has basis }\left\{\binom{1}{0},\binom{0}{1}\right\}=V_{c}, \text { eigeurpace } \\
& \text { with } \operatorname{din} V_{c}=2 .
\end{aligned}
$$

Definition: If A is a matrix with eigenvalue λ, we define the eigenspace of λ to be

$$
V_{\lambda}=\operatorname{ker}(A-\lambda I) .
$$

Then

$\operatorname{dim} V_{\lambda}=$ the number of linearly independent eigenvectors of A with eigenvalue λ.
Thus, if $\operatorname{dim} V_{\lambda}=$ the multiplicity of λ, then λ is complete.
*It can be shown that $\operatorname{dim} V_{\lambda}$ is never greater than λ 's multiplicity.

Definition: If all eigenvalues of A are complete, we say the matrix A itself is a complete matrix.

- $A=\left(\begin{array}{ll}c & 1 \\ 0 & c\end{array}\right)$ is NT I complete
- $B=\left(\begin{array}{ll}6 & 0 \\ 0 & 0\end{array}\right)$ is complete.

Fact: If $n \times n$ matrix A is complete, then we can form a basis of \mathbb{C}^{n} with its eigenvectors.
\S Diagonalization. Consider the linear operator $L[\mathbf{v}]=A \mathbf{v}$. Suppose ma$\operatorname{trix} A$ is complete, and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are its basis of eigenvectors, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Q: What happens if we change basis, and represent A in the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$?
[To see this]. Denote by B the matrix that represents the operator $L[\mathbf{v}]=A \mathbf{v}$ in the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. As we've seen,

$$
B=V^{-1} A V
$$

where - ergenvertors of A.

$$
\begin{aligned}
V B=A V=A\left[v_{1}, \ldots, v_{n}\right] & =\left[A v_{1}, \ldots, A v_{n}\right] \\
& =\left[\lambda_{1} v_{1}, \ldots, \lambda_{n} v_{n}\right]
\end{aligned}
$$

If $B=\left[b, \ldots, b_{n}\right]$, then

$$
U B=V\left[b_{1}, \ldots, b_{n}\right]=\left[V b_{1}, \ldots, V b_{n}\right]
$$

Thus, $T b_{j}=\lambda_{j} v_{j}, 1 \leq j \leq n$.
Writing $b_{j}=\left(\begin{array}{c}b_{i j} \\ \vdots \\ b_{n j}\end{array}\right)$, then

$$
U b_{j}=\sum_{i=1}^{n} b_{i j} v_{i}=\prod_{j} v_{j}
$$

Since $v_{1} \ldots, v_{n}$ are linearly independent, this

From above, we have shown that we can factor any complete matrix A as follows:

$$
\begin{gathered}
B=\operatorname{ding}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=V^{-1} A \cup \\
A=V D V^{-1}
\end{gathered}
$$

where $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is the matrix of eigenvectors, and

$$
D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

is the diagonal matrix of eigenvalues.
\checkmark In other words, representing the operator $L[\mathbf{v}]=A \mathbf{v}$ in the basis of A 's eigenvectors gives a diagonal matrix. (B)

Definition: We say that the matrix A is diagonalizable, meaning it can be factored in the form $A=V D V^{-1}$ where D is diagonal and V is nonsingular.

Fact: A matrix is complete if and only if it is diagonalizable.

Let's revisit the examples.
Example. $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$. We have found its eigenvalues $\lambda=2,2,4$.
Moreover,
eigenvalue $\lambda=2, \quad \begin{aligned} & \text { complete } \\ & \text { eigenvectors } \\ & \mathbf{v}_{1}\end{aligned}=(-1,1,0)^{T}, \quad \mathbf{v}_{2}=(0,0,1)^{T}$,

Thus, the matrix A is complete. Moreover,

Example. We already have found the eigenvectors and eigenvalues of the rotation matrix $Q_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. (in lecture 30)

We've seen that Q_{θ} has eigenvalues $\frac{e^{i \theta}}{\lambda_{1}} \frac{e^{-i \theta}}{\lambda_{2}}$, and eigenvectors $\frac{(i, 1)^{T}}{v_{1}}, \frac{(-i, 1)^{T}}{v_{2}}$.

$$
\begin{aligned}
Q_{\theta} & =\left(\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)\left(\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)\left(\begin{array}{cc}
-i / 2 & 1 / 2 \\
i / 2 & 1 / 2
\end{array}\right)^{3}
\end{aligned}
$$

\S Some properties

- Suppose $A=V D V^{-1}$, where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$. What is A^{2} and A^{k} ?

$$
\begin{aligned}
A^{2}=U D \underline{U}^{-1} U D U^{-1}=U D I D U^{-1} & =U D D U^{-1} \\
& =U D^{2} U^{-1}
\end{aligned}
$$

In general,

$$
\begin{aligned}
A^{k} & =V D^{k} U^{-1} \\
& =\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right]\left(\begin{array}{ccc}
\lambda_{1}^{k} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}^{k}
\end{array}\right)\left[\begin{array}{lll}
u & \ldots & v_{n}
\end{array}\right]^{-1} .
\end{aligned}
$$

Fact: A^{k} has the same eigenvectors as A, and the eigenvalues are just $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$.
To generalized this fact: Let $\quad D_{1}=\left(\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right), \quad D_{2}=\left(\begin{array}{ccc}\mu_{1} & & 0 \\ 0 & \ddots & \\ 0 & & \mu_{n}\end{array}\right)$

- We say two matrices A and B are simultaneously diagonalizable if $A=$ $V \underline{D_{1} V^{-1}}$ and $\underline{B=V \sqrt{D_{2}} V^{-1}}$, for diagonal matrices D_{1} and D_{2}.

$$
\begin{aligned}
A B & =U D_{1} V^{-1} U D_{2} V^{-1}=U D_{1} D_{2} U^{-1} \\
& =V\left(\begin{array}{lll}
\lambda_{1} \mu_{1} & & 0 \\
0 & \ddots & \lambda_{n} \mu_{n}
\end{array}\right) U^{-1} .
\end{aligned}
$$

Also,

$$
B A=V\left(\begin{array}{ccc}
x_{1} \mu_{1} & & 0 \\
0 & i_{n} \mu_{n}
\end{array}\right) V^{-1} .
$$

Thus, $\quad A B=B A$.

Fact: If A and B are simultaneously diagonalizable. Then A and B have the same eigenvectors. And $A B$ does too and the eigenvalues are just the products of the eigenvalues of A and B.

- If $A=V D V^{-1}$, then A is invertible if and only if $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ has all Honzerodiagonal elements.
Indeed,

$$
\begin{aligned}
\operatorname{det} A & =\operatorname{det}\left(U D U^{-1}\right) \\
& =\operatorname{det} U \cdot \operatorname{det} D \cdot \operatorname{det}\left(U^{-1}\right) \\
& =\operatorname{det} D=\lambda_{1} \lambda_{2} \ldots \lambda_{n} .
\end{aligned}
$$

So $\operatorname{det} A \neq 0$ if and only if all $\lambda_{i} \neq 0$.

- Find A^{-1}.

$$
\begin{aligned}
A^{-1} & =\left(U D U^{-1}\right)^{-1} \\
& =\left(U^{-1}\right)^{-1} D^{-1} U^{-1} \\
& =U D^{-1} U^{-1} \\
& =T\left(\begin{array}{ccc}
\frac{1}{\lambda_{1}} & 0 \\
0 & \frac{1}{\lambda_{n}}
\end{array}\right) U^{-1} \\
\text { So, } & \frac{1}{\lambda_{j}} \text { B eigenvalue of } A^{-1} .
\end{aligned}
$$

§ Systems of Differential Equations.
Consider the system of differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =3 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime} & =2 x_{1}+4 x_{2}+2 x_{3} \\
x_{3}^{\prime} & =-x_{1}-x_{2}+x_{3},
\end{aligned}
$$

where $x_{i}=x_{i}(t)$ is a differentiable real-valued function of the real variable t.
Clearly, $x_{i}(t)=0$ is the solution of the system.

- To find the general solutions to this system:

$$
\underbrace{\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)}_{x^{\prime}(t)}=\underbrace{\left(\begin{array}{ccc}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)}_{x(t)}
$$

We can diagonalize A into $A=U D J^{-1}$, $\begin{array}{ll}\text { where } & D=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right), \quad V=\left(\begin{array}{ccc}-1 & 0 & -1 \\ 0 & -1 & -2 \\ 1 & 1 & 1 \\ v_{1} & u_{2} & U_{3}\end{array}\right] . \\ I n=2, & \text { eigenvectors } \\ v_{1}, v_{2}\end{array}$ 1- $\left.\begin{array}{ccc}n=2, & \text { eigenvectors } & v_{1}, v_{2} \\ n=4, & v_{3}\end{array}\right]$

$$
\begin{aligned}
& X^{\prime}(t)=A x(t)=V D U^{-1} x \\
\Rightarrow & U^{-1} x^{\prime}=D U^{-1} x .
\end{aligned}
$$

Let $y(t)=V^{-1} x(t)$. Then.

$$
y^{\prime}(t)=D y(t)
$$

that is, $\quad\left(\begin{array}{l}y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ y_{3}^{\prime}(t)\end{array}\right)=\left(\begin{array}{lll}2 & & \\ & 2 & \\ & & 4\end{array}\right)\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$, which is $\begin{aligned} & \text { much singhiek } \\ & \text { Spring 20020 }\end{aligned}$ so solve.

$$
\begin{cases}y_{1}^{\prime}(t)=2 y_{1}(t), & y_{1}(t)=c_{1} e^{(2) t}, \\ y_{2}^{\prime}(t)=2 y_{2}(t), & y_{2}(t)=c_{2} e^{2 t}, c_{1}, c_{2}, c_{3} \in \mathbb{R} . \\ y_{3}^{\prime}(t)=4 y_{3}(t), & y_{3}(t)=c_{3} e^{4 t},\end{cases}
$$

So, $x(t)=V y(t)=\left(\begin{array}{ccc}-1 & 0 & -1 \\ 0 & -1 & -2 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}c_{1} e^{2 t} \\ c_{2} e^{2 t} \\ c_{3} e^{4 t}\end{array}\right)$

$$
=e^{2 t}(\underbrace{c_{1}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)}_{i n k \operatorname{ker}(A-2 I)})+\underbrace{e^{4 t}\left(\begin{array}{c}
-1 \\
c_{3}-2 \\
1
\end{array}\right)}_{i n k \operatorname{ker}(A-4 I)}) .
$$

