Lecture 31: Quick review from previous lecture

- A and A^T has the same eigenvalues.
- tr(A) = $\sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$. (2) det $A = \lambda_1 \lambda_2 \cdots \lambda_n$.
- If $\lambda_1, \ldots, \lambda_k$ are pairwise distinct eigenvalues of A, then the corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent.
- An eigenvalue λ of a matrix A is **complete** if the number of linearly independent eigenvectors with eigenvalue λ is equal to the multiplicity of λ .

Today we will discuss Diagonalization.

- Lecture will be recorded -

• Solutions for Midterm 2 has been posted on Canvas, see "Announcements".

Example.

• $A = \begin{pmatrix} c & 1 \\ 0 & c \end{pmatrix}$ has only one eigenvalue with multiplicity 2, with only one eigenvector $(1, 0)^T$. Its eigenvalue c is NOT a complete eigenvalue. $0 = det (A - \pi I) = det \begin{pmatrix} c - \pi I \\ 0 & c - \pi \end{pmatrix} = (A - \pi I)^2$ $A-cI = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ Ker } (A-cI) = \text{ span} \int \begin{pmatrix} 0 \\ 0 \\ 0 \\ c \end{pmatrix} = \nabla_c, \text{ eigenspace}$ • On the other hand, the matrix $B = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}$ also has only one eigenvalue c with multiplicity 2, but it had two linearly independent eigenvectors $(1,0)^T$ and $(0,1)^T$ (and any non-zero linear combination of these). Its eigenvalue c is a complete eigenvalue. $0 = det (B - \lambda Z) = ((-\lambda)^{2}$. $B-CI = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, Ker (B-CI) has basis $\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \} = U_c$, eigenspace with dim Uc= 2 **Definition:** If A is a matrix with eigenvalue λ , we define the **eigenspace** of λ to be $V_{\lambda} = \ker(A - \lambda I).$ Then dim V_{λ} = the number of linearly independent eigenvectors of A with eigenvalue λ . Thus, if dim V_{λ} = the multiplicity of λ , then λ is complete. *It can be shown that dim V_{λ} is never greater than λ 's multiplicity.

Definition: If all eigenvalues of A are complete, we say the matrix A itself is a complete matrix. • $A = \begin{pmatrix} c \\ c \\ c \end{pmatrix}$ is <u>MI</u> complete • $B = \begin{pmatrix} c \\ c \\ c \\ c \end{pmatrix}$ is complete. Fact: If $n \times n$ matrix A is complete, then we can form a basis of \mathbb{C}^n with its eigenvectors. § Diagonalization. Consider the linear operator $L[\mathbf{v}] = A\mathbf{v}$. Suppose matrix A is complete, and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are its basis of eigenvectors, with eigenvalues $\lambda_1, \ldots, \lambda_n$.

Q: What happens if we change basis, and represent A in the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$?

[To see this]. Denote by B the matrix that represents the operator $L[\mathbf{v}] = A\mathbf{v}$ in the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$. As we've seen,

where

$$B = V^{-1}AV$$

$$V = [\mathbf{v}_1, \dots, \mathbf{v}_n].$$
ergenvertors of A.

Jい

(0

$$TB = AT = A[v_1, ..., v_n] = [Av_1, ..., Av_n]$$
$$= [\lambda_1 v_1, ..., \lambda_n v_n]$$
$$TB = [b_1, ..., b_n], then //$$
$$TB = T[b_1, ..., b_n] = [Tb_1, ..., Tb_n].$$
$$Thus, Tb_j = \lambda_j v_j, \quad i \in j \leq n.$$
$$Writing \quad b_j = {b_i j \choose i}, \quad then$$
$$Tb_j = \sum_{i=1}^{n} b_{ij} v_i = \lambda_j v_j.$$
$$Since \quad v_1, ..., v_n \text{ are linearly independent, this } \square$$
$$MATH Mathematical b_i = 0, \quad i \neq j \leq 3$$
 Tre leads to $B = {\lambda_1 v_j \choose i}$

 $b_{ij} = \lambda_{i}$

From above, we have shown that we can factor any complete matrix A as follows: $B = Jiag(\lambda_1, \dots, \lambda_n) = V^T A V$ $A = VDV^{-1}$ where $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ is the matrix of eigenvectors, and $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$

is the diagonal matrix of eigenvalues.

 \checkmark In other words, representing the operator $L[\mathbf{v}] = A\mathbf{v}$ in the basis of A's eigenvectors gives a diagonal matrix. (B)

Definition: We say that the matrix A is **diagonalizable**, meaning it can be factored in the form $A = VDV^{-1}$ where D is diagonal and V is nonsingular.

Fact: A matrix is complete if and only if it is diagonalizable.

Let's revisit the examples. **Example.** $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. We have found its eigenvalues $\lambda = 2, 2, 4$. Moreover, eigenvalue $\lambda = 2$, eigenvectors $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, eigenvalue $\lambda = 4$, eigenvector $\mathbf{v}_3 = (1, 1, 0)^T$. Thus, the matrix A is complete. Moreover, Moreover, $A = VDV^{-1}, = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $= [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3].$ $EX: \text{ To compute$ where D = diag(2, 2, 4) and $V = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$. **Example.** We already have found the eigenvectors and eigenvalues of the rotation matrix $Q_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. (In lecture 30) We've seen that Q_{θ} has eigenvalues $e^{i\theta}$ and $e^{-i\theta}$, and eigenvectors $(i, 1)^T$, $(-i, 1)^T$. $Q_{\theta} = \begin{pmatrix} i & -i \\ i & -i \end{pmatrix} \begin{pmatrix} e^{i\theta} & o \\ e^{-i\theta} & -i \end{pmatrix} \begin{pmatrix} i & -i \\ i & -i \end{pmatrix}^{-1}$

$$= \begin{pmatrix} i & -i \\ 1 & i \end{pmatrix} \begin{pmatrix} e^{\tau \Theta} & 0 \\ 0 & e^{-i\Theta} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

§ Some properties

• Suppose $A = VDV^{-1}$, where $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ and $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$. What is A^2 and A^k ? $A^2 = VDU' VDV' = VDIDV = VDPV'$ $= VD^2v'$

In general,

$$A^{k} = \nabla D^{k} \nabla^{-1}.$$

$$= \left[\sqrt{1} \dots \sqrt{n} \right] \begin{pmatrix} n_{1}^{k} & 0 \\ 0 & n_{n}^{k} \end{pmatrix} \left[u \dots \sqrt{n} \right]^{-1}.$$

Fact: A^k has the same eigenvectors as A, and the eigenvalues are just $\lambda_1^k, \ldots, \lambda_n^k$.

Fact: If A and B are simultaneously diagonalizable. Then A and B have the same eigenvectors. And AB does too and the eigenvalues are just the products of the eigenvalues of A and B.

• If $A = VDV^{-1}$, then A is invertible if and only if $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ has all nonzero diagonal elements. Indeed,

$$\det A = \det (V D V')$$

= $\det V \cdot \det D \cdot \det (V')$
= $\det D = \Lambda, \Lambda_2 \cdots \Lambda_n$.

So det $A \neq 0$ if and only if all $\lambda_i \neq 0$.

• Find A^{-1} .

$$A^{-1} = (\nabla D \nabla^{-1})^{-1}$$

$$= (\nabla^{-1})^{-1} D^{-1} \nabla^{-1}$$

$$= \nabla D^{-1} \nabla^{-1}$$

$$= \nabla \left(\frac{\pi}{\lambda_{1}}, \stackrel{\circ}{} \right) \nabla^{-1}$$

$$= \nabla \left(\frac{\pi}{\lambda_{1}}, \stackrel{\circ}{} \right) \nabla^{-1}$$

$$= 50, \quad \frac{1}{\lambda_{1}} \quad \pi \text{ eigenvalue of } A^{-1}.$$

\S Systems of Differential Equations.

Consider the system of differential equations

$$x_1' = 3x_1 + x_2 + x_3$$

$$x_2' = 2x_1 + 4x_2 + 2x_3$$

$$x_3' = -x_1 - x_2 + x_3,$$

where $x_i = x_i(t)$ is a differentiable real-valued function of the real variable t. Clearly, $x_i(t) = 0$ is the solution of the system.

— To find the general solutions to this system:

$$\begin{array}{l} \begin{pmatrix} x_{1}'\\ x_{2}'\\ x_{3}' \end{pmatrix} = \begin{pmatrix} 3 & 1^{-1}\\ 2 & 4 & 2\\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_{1}\\ x_{3} \end{pmatrix} \\ x(t) \end{array}$$

$$\begin{array}{l} We \quad can \quad diagonalize \quad A \quad into \quad A = & UDU^{T}, \\ where \quad D = \begin{pmatrix} 2 & 0 & 0\\ 0 & 0 & 4 \end{pmatrix}, \quad V = \begin{pmatrix} -1 & 0 & -1^{T}\\ 0 & 1 & -2 \end{pmatrix} \\ \hline n=2, \quad eigen vectors \quad V_{1}, V_{2} \\ n=4, \quad V_{1} \\ \end{array}$$

$$\begin{array}{l} X'(t) = & A \times (t) = & UDU^{T} \times \\ = & VDU^{T} \times \\ A=4, \quad V_{1} \\ \end{array}$$

$$\begin{array}{l} X'(t) = & A \times (t) = & UDU^{T} \times \\ = & VDU^{T} \times \\ Let \quad Y(t) = & U^{T} \times (t) \\ y'(t) = & U^{T} \times (t) \\ \end{array}$$

$$\begin{array}{l} Y'(t) = & Dy(t) \\ thor \quad V_{2} \\ \end{array}$$

$$\begin{array}{l} Y'(t) = & Dy(t) \\ y'(t) = & U^{T} \times (t) \\ \end{array}$$

$$\begin{array}{l} Y'(t) = & Dy(t) \\ y'(t) = & U^{T} \times (t) \\ \end{array}$$

$$\begin{array}{l} Y'(t) = & Dy(t) \\ thor \quad V_{2} \\ y'(t) = & U^{T} \times (t) \\ \end{array}$$

 $y_{1}(+) = C_{1} e^{2t}$ y, (+)= (2)y, (+), $y'_{1}(t) = 2 y_{1}(t) ,$ $y'_{1}(t) = 4 y_{3}(t) .$ $y_2(4) = C_2 e^{2t}$, $C_1, C_2, C_3 \in \mathbb{R}$. $y_{3}(t) = C_{3} e^{4t}$ $\chi(t) = \nabla y(t) = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 e^{-1} \\ c_2 e^{2t} \\ c_3 o^{q_1 t} \end{pmatrix}$ 50, $= e^{2t} \left(C_1 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right) + e^{4t} \left(C_3 \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \right)$ $\lim_{k \in \mathcal{N}(\mathcal{A} \neq \mathbb{Z})} \lim_{k \in \mathcal{N}(\mathcal{A} \neq \mathbb{Z})} \frac{1}{k}$ ~ Ker (A-1I)