
Lecture 31: Quick review from previous lecture

• A and AT has the same eigenvalues.

• tr(A) =
Pn

i=1 aii =
Pn

i=1 �i. (2) detA = �1�2 · · ·�n.

• If �1, . . . ,�k are pairwise distinct eigenvalues of A, then the corresponding
eigenvectors v1, . . . ,vk are linearly independent.

• An eigenvalue � of a matrix A is complete if the number of linearly indepen-
dent eigenvectors with eigenvalue � is equal to the multiplicity of �.

—————————————————————————————————
Today we will discuss Diagonalization.

- Lecture will be recorded -

—————————————————————————————————

• Solutions for Midterm 2 has been posted on Canvas, see ”Announcements”.
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Example.

• A =

✓
c 1
0 c

◆
has only one eigenvalue c with multiplicity 2, with only one

eigenvector (1, 0)T . Its eigenvalue c is NOT a complete eigenvalue.

• On the other hand, the matrix B =

✓
c 0
0 c

◆
also has only one eigenvalue

c with multiplicity 2, but it had two linearly independent eigenvectors (1, 0)T

and (0, 1)T (and any non-zero linear combination of these). Its eigenvalue c is
a complete eigenvalue.

Definition: If A is a matrix with eigenvalue �, we define the eigenspace of
� to be

V� = ker(A� �I).

Then

dimV� = the number of linearly independent eigenvectors of A with eigenvalue �.

Thus, if dimV� = the multiplicity of �, then � is complete.
*It can be shown that dimV� is never greater than �’s multiplicity.

Definition: If all eigenvalues of A are complete, we say the matrix A itself is
a complete matrix.

Fact: If n ⇥ n matrix A is complete, then we can form a basis of Cn with its
eigenvectors.
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§ Diagonalization. Consider the linear operator L[v] = Av. Suppose ma-
trix A is complete, and v1, . . . ,vn are its basis of eigenvectors, with eigenvalues
�1, . . . ,�n.

Q: What happens if we change basis, and represent A in the basis v1, . . . ,vn?

[To see this]. Denote by B the matrix that represents the operator L[v] = Av in
the basis v1, . . . ,vn. As we’ve seen,

B = V �1AV

where

V = [v1, . . . ,vn].
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;
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From above, we have shown that we can factor any complete matrix A as fol-
lows:

A = V DV �1

where V = [v1, . . . ,vn] is the matrix of eigenvectors, and

D = diag(�1, . . . ,�n) =

0

BBB@

�1 0 · · · 0
0 �2 · · · 0
... . . . ...
0 · · · 0 �n

1

CCCA

is the diagonal matrix of eigenvalues.

X In other words, representing the operator L[v] = Av in the basis of A’s
eigenvectors gives a diagonal matrix.

Definition: We say that the matrix A is diagonalizable, meaning it can be
factored in the form A = V DV �1 where D is diagonal and V is nonsingular.

Fact: A matrix is complete if and only if it is diagonalizable.
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Let’s revisit the examples.

Example. A =

0

@
3 1 0
1 3 0
0 0 2

1

A . We have found its eigenvalues � = 2, 2, 4.

Moreover,

eigenvalue � = 2, eigenvectors v1 = (�1, 1, 0)T , v2 = (0, 0, 1)T ,

eigenvalue � = 4, eigenvector v3 = (1, 1, 0)T .

Thus, the matrix A is complete. Moreover,

A = V DV �1,

where D = diag(2, 2, 4) and V = [v1,v2,v3].

Example. We already have found the eigenvectors and eigenvalues of the rotation

matrix Q✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.

We’ve seen thatQ✓ has eigenvalues ei✓ and e�i✓, and eigenvectors (i, 1)T , (�i, 1)T .
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§ Some properties

• Suppose A = V DV �1, where D = diag(�1, . . . ,�n) and V = [v1, . . . ,vn].

What is A2 and Ak?

Fact: Ak has the same eigenvectors asA, and the eigenvalues are just �k
1, . . . ,�

k
n.

To generalized this fact:

• We say two matrices A and B are simultaneously diagonalizable if A =
V D1V �1 and B = V D2V �1, for diagonal matrices D1 and D2.
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• If A = V DV �1, then A is invertible if and only if D = diag(�1, . . . ,�n) has
all nonzero diagonal elements.

Indeed,

detA =

So detA 6= 0 if and only if all �i 6= 0.

• Find A�1.
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Fact: If A and B are simultaneously diagonalizable. Then A and B 
have the same eigenvectors. And AB does too and the eigenvalues



§ Systems of Di↵erential Equations.
Consider the system of di↵erential equations

x01 = 3x1 + x2 + x3
x02 = 2x1 + 4x2 + 2x3
x03 = �x1 � x2 + x3,

where xi = xi(t) is a di↵erentiable real-valued function of the real variable t.
Clearly, xi(t) = 0 is the solution of the system.

— To find the general solutions to this system:
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