
Lecture 32: Quick review from previous lecture

• We say that the matrix A is diagonalizable if it can be factored in the form
A = V DV �1 where D is diagonal and V is nonsingular.

• A is complete if every eigenvalue’s eigenspace satisfying dimV� = the multi-
plicity of �.

• A matrix is complete if and only if it is diagonalizable.

• Ak has the same eigenvectors as A, and the eigenvalues are just �k
1, . . . ,�

k
n.

—————————————————————————————————
Today we will discuss diagonalization of symmetric matrices.

- Lecture will be recorded -

—————————————————————————————————

• Solutions for Midterm 2 has been posted on Canvas, see ”Announcements”.
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8.5 Eigenvalues of Symmetric Matrices

Let’s focus on the theory of eigenvalues and eigenvectors for symmetric matri-
ces, which have many nice properties.

Recall the example again.

Example 1. A =

0

@
3 1 0
1 3 0
0 0 2

1

A . In Lecture 30, we have found

eigenvalue � = 2, eigenvectors v1 = (�1, 1, 0)T , v2 = (0, 0, 1)T ,

eigenvalue � = 4, eigenvector v3 = (1, 1, 0)T .

Thus, the matrix A is complete. Moreover,

A = V DV �1,

where D = diag(2, 2, 4) and V = [v1,v2,v3].

• These eigenvectors v1,v2,v3 are mutually orthogonal!

• The eigenvalues of A are real numbers, not complex.

These facts are explained by the following Spectral Theorem.

The Spectral Theorem: Let A = AT be a real symmetric n ⇥ n matrix.
Then

1. All the eigenvalues of A are real.

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. There is an orthonormal basis of Rn consisting of n eigenvectors of A.

In particular, all real symmetric matrices are complete and real diagonalizable.

* Orthogonality is with respect to the standard dot product on Rn.
Its proof will be discussed later.

MATH 4242-Week 13-1 2 Spring 2020

A- AT
.

-

T
-

- e: : ill
.
.

.It it
.

Y . is = ( I) . I 91--0
= 0 "

vi. is : :

T Fs'
entries inA
are seal number

.

-



Suppose A is real and symmetric, and let �1, . . . ,�n denote its eigenvalues.
Then the above Spectral Theorem tells us we can choose eigenvectors u1, . . . ,un

(so Aui = �iui) that are orthonormal.
If U = [u1, . . . ,un] and D = diag(�1, . . . ,�n), then

From Example 1, we have seen A =

0

@
3 1 0
1 3 0
0 0 2

1

A has eigenvectors

v1 = (�1, 1, 0)T , v2 = (0, 0, 1)T , v3 = (1, 1, 0)T .

Normalizing these vectors, we get the matrix

Q =

0

@
�1/

p
2 0 1/

p
2

1/
p
2 0 1/

p
2

0 1 0

1

A

Thus, we have the factorization

A =

0

@
3 1 0
1 3 0
0 0 2

1

A

=

0

@
�1/

p
2 0 1/

p
2

1/
p
2 0 1/

p
2

0 1 0

1

A

0

@
2 0 0
0 2 0
0 0 4

1

A

0

@
�1/

p
2 1/

p
2 0

0 0 1
1/
p
2 1/

p
2 0

1

A

= Q diag(2, 2, 4) QT
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Thus, we conclude that

The Spectral Theorem: Let A = AT be a real symmetric n ⇥ n matrix.
Then there exists an orthogonal matrix Q such that

A = QDQ�1 = QDQT, (spectral factorization)

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal
of D, while the columns of Q are the corresponding orthonormal eigenvectors.

* The term “spectrum” refers to the eigenvalues of a matrix.

§ Revisit Positive definite matrix. Suppose K is positive definite (in par-
ticular, symmetric). Let u1, . . . ,un denote the orthonormal eigenvector basis, with
eigenvalues �1, . . . ,�n.

Fact 1: A symmetric matrix K is positive definite if and only if all of its
eigenvalues are strictly positive, that is, �j > 0

[To see this:]

Remark: The same proof shows that K is positive semidefinite if and only if all
its eigenvalues � � 0.
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Example. In Lecture 30, we have seen that the eigenvalues ofA =

0

@
2 0 0
0 5 �1
0 �1 5

1

A

are 2, 4 and 6. Thus, from the Spectral Theorem, since all eigenvalues are positive,
A is positive definite (or A > 0).

*Note that to see if a matrix is positive definite, one can also perform the Gaussian
elimination (See In Lecture 19):

p From Gaussian elimination. We have

A���� �!

0

@
2 0 0
0 5 �1
0 0 24/5

1

A .

Since all diagonal entries are positive, we confirm that A is positive definite. y

§ The proof of the Spectral Theorem.

Proof of the spectral theorem. Let A = AT be a real symmetric n⇥ n matrix.

1. Show all eigenvalues of A is real.

2. The eigenvectors of A corresponding to di↵erent eigenvalues are orthogonal.

3. There is an orthonormal basis of Rn consisting of n eigenvectors of A.
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[Proof continue]

Fact: If A = AT is symmetric, suppose u1, . . . ,un are the orthonormal eigen-
vectors. Suppose u1, . . . ,ur all have non-zero eigenvalues, but ur+1, . . . ,un have
eigenvalue 0 (i.e. they’re in kerA). Consequently, u1, . . . ,ur are orthogonal to
kerA, and hence

u1, . . . ,ur form an orthonormal basis for coimgA = imgA.

Moreover, one has

ur+1, . . . ,un form an orthonormal basis for kerA = cokerA.

MATH 4242-Week 13-1 6 Spring 2020

we get a = I ,
so T is seal

.

#

2
. Suppose him . and Av = TV , Aw =Mw .

Cav
,
w> = (Av . w > = ( v , Aw) - cvyuw?

T
"

A- AT ' 'Mikal
.Acv

,
w> mcu.ws

(n -y ) ( V.w> = O . Then CV
,
w> =o

.

-- #
H
O

-

M$0
Aug. = Tljuj . ' EI Er

span IAU, AAvi
⇐ spans:n . . .- -it!A Uk -- O

,
#Ken

.

{ Arti
,
- - - , Un )

.

CokerA
{are . - -Mn)

.



Example. Let A =

0

@
1 �1 0

�1 1 0
0 0 3

1

A. Find an orthonormal basis for coimgA.

Warning: Do not confuse the LD̃LT factorization(from Gaussian elimination) of
regular symmetric matrices with the QDQT spectral factorization of a symmetric
matrix from the spectral theorem!

Note that: If A = LD̃LT (from Gaussian elimination), where L is lower tri-
angular, the diagonal matrix D̃ will typically not contain the eigenvalues on its
diagonal.
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