Lecture 32: Quick review from previous lecture

e We say that the matrix A is diagonalizable if it can be factored in the form
A = VDV~ where D is diagonal and V' is nonsingular.

e A is complete if every eigenvalue’s eigenspace satisfying dim V) = the multi-
plicity of A\. [ det(4-21) = o) Ua= Ker (A-21)

e A matrix is complete if and only if it is diagonalizable.

o A* has the same eigenvectors as A, and the eigenvalues are just A, ..., \¥.

Today we will discuss diagonalization of symmetric matrices.

A = VDU [u-u s e

- Lecture will be recorded -

e Solutions for Midterm 2 has been posted on Canvas, see ” Announcements”.
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8.5 Eigenvalues of Symmetric Matrices

Let’s focus on the theory of eigenvalues and eigenvectors for symmetric matri-
ces, which have many nice properties.

Recall the example again. A= A'T

3 1 0
Example 1. A= | 1 3 0 |.In Lecture 30, we have found
0 0 2

eigenvalue A = 2,

eigenvectors vi = (—1, 1, O)T, vy = (0,0, 1)T>
eigenvalue \ = 4,

eigenvector vz = (1,1,0)".
Thus, the matrix A is complete. Moreover,

-'

- 9 |

A=vpyt=[73 '”zz ][’fa,]
) I é 4Jlo | 97 .

where D = diag(2,2,4) and V' = [vy, vo, V).

- -/ 9 =0
e These eigenvectors vy, Vo, vs are mutually orthogonal! Y V, = ( ! ) ( ‘;') -

e The eigenvalues of A are.i@' umbers, not complex. G- = o
- vi-Uy = 0.

These facts are explained by the following Spectral Theorem.

The Spectral Theorem: Let A = A" be a real symmetric n X n matrix.
Then

s - A7
embri€s MA A A
(37 & uﬂ’ numu/ .

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

1. All the eigenvalues of A are real.

3. There is an orthonormal basis of R" consisting of n eigenvectors of A.

In particular, all real symmetric matrices are complete and real diagonalizable.

* Orthogonality is with respect to the standard dot product on R".
[ts proof will be discussed later.
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Suppose A is real and symmetric, and let A\, ..., A, denote its eigenvalues.
Then the above Spectral Theorem tells us we can choose eigenvectors uy, ..., u,

(so Au; = \ju;) that are orthonormal.
If U =[uy,...,u,] and D = diag(\y, ..., \,), then

A=UDU" ,
whee  wolumns of U s ovtho nvimal baiz oF IE"'
It mplies U s M‘wjm“l matnX (UTY - UU-':I)
and hen U? = U Thus

A= ubuT]

1 0
From Example 1, we haveseen A= | 1 3 0 | has eigenvectors
0 2

vi=(-1,1,00", vo=1(0,0,1)", wvy3=1(1,1,0)".

Normalizing these vectors, we get the matrix

—1/v/2 0 1/4/2
Q= 1/v2 012 | s mt.,)jm/ wallaX
0 1 0 L

Thus, we have the factorization

3 1 0
A=11 3 0
0 0 2

~1/v2 0 1/4/2 2 0 0 —1/v/2 1/v2 0
= 1/v/2 01/V2 0 2 0 0 0 1
0 1 0 0 0 4 1/v/2 1/4/2 0

= Q diag(2,2,4) Q"
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Thus, we conclude that

The Spectral Theorem: Let A = A” be a real symmetric n X n matrix.
Then there exists an orthogonal matrix () such that

A=QDQ ' =QDQ!, (spectral factorization)

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal

of D, while the columns of () are the corresponding orthonormal eigenvectors.

* The term “spectrum” refers to the eigenvalues of a matrix.

@ k =k7
{@ KKx >0

§ Revisit Positive definite matrix. Suppose K is positive definite (in par-X#o
ticular, symmetric). Let uy, ..., u, denote the @meigenvector basis, with
eigenvalues Ay, ..., \,.

Fact 1: A symmetric matrix K is positive definite if and only if all of its

eigenvalues are strictly positive, that is, A; > 0

[To see this:]
(=) fuppou K >0, Thus
2
T = o (A ) = N uTu. = U-(|
0< u Ku = o (Aw) = 1 ulu; = Afl4
= A-
$o 0 < ﬂj , 1] € wn, J"
() Suee U ..., un ] s an  othornowal bas3 fir e,

fw a"/ *x ’ & - C' M‘ + e of C“ M“
o
Remark: The same proof lshows that K is positive semidefinite if and only if all

its eigenvalues A > 0. VYTK X =(c,u, +.--F c,.u..)-r K(C.u, b F a.u..)
T
= (‘\“' -c----fa.u..) (c\ 7‘,‘1‘ +.-. +—C, 2\.“\‘ )
- - T _
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2 0 0
Example. In Lecture 30, we have seen that the eigenvaluesof A = | 0 b —1

Foat 1. 0 -1 5
are 2, 4 and 6. Thus, from the Sprectrat—Fheorem, since all eigenvalues are positive,

A is positive definite (or A > 0).

*Note that to see if a matrix is positive definite, one can also perform the Gaussian
climination (See In Lecture 19):

" From Gaussian elimination. We have F,w{—;
7

@0 (@ 1)) o

————— 10 ® -1

0 0
Since all diagonal entries ar, we confirm that A isositive deﬁmfe) J

§ The proof of the Spectral Theorem.

Proof of the spectral theorem. Let A = A be a real symmetric n X n matrix.
1. Show all eigenvalues of A is real.
2. The eigenvectors of A corresponding to different eigenvalues are orthogonal.

3. There is an orthonormal basis of R" consisting of n eigenvectors of A. @
( Sea Textbool Fa Pvoparty 3) /

Pat: 1. e A= AT, ome g < Av, w>=<v, Au)
fuppoaz N s an «‘z—,equlu M'Tl'\ oavye,;'m,,‘l,uﬂ_

o ¢ ) € gen vetor v,
Azatib CAv, ub= <MW, u>= AV, V>
"=a-ib

Cv,Av> = Cv,av> = kv, v
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we get N= 7 . o NI el .
[Proof continue] #
w

2. {l./\,)')su 7\‘\’/\". onvd Av=7v, Aw:/A

dnv, wd = {Av. w>?= v, AwD =cv.pmw
// = AT Ilimss
ACu,w> 4= A e

(7\_;/;> Wowd = 0. Then <vuw> =0 .
o

Fact: If A = A” is symmetric, suppose uy, ..., u, are the orthonormal eigen-
;‘
vectors. Suppose uy, . .., u, all have non-zero eigenvalues, but u,,1, ..., u, have

eigenvalue 0 (i.e. they're in ker A). Consequently, uy, ..., u, are orthogonal to
ker A, and hence

uy, ..., u, form an orthonormal basis for coimg A = img A.

Moreover, one has

W,..1,...,U, form an orthonormal basis for ker A = coker A.
= 1 .
A. = W, I < < Y
Auwi = Dw €]

Avj-:. J..ﬁ:\' Spén IAM',m, AW]

= span fb‘, ,,,.,l‘v )

e * ; 4

>
P
v
&)
X
A
L}
"
S

{Ml’*l,~v-; Un } f“ Cab‘;'é“
el .., Qn
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-1 0

Example. Let A= | —1 1 0 ]. Find an orthonormal basis for coimg A.
3
o &c(/,x_ A1) = A(a-2) (n-3).
=0 2 3

Nn=o . Kev(@-01) =ke. A . €Fo-vectv

»* (§)

e/.’jwmvertw _ /-':)
" > /.
=3 )
i (7)
cal\'*j/l
f\l|,l/»$ E‘k@mk
/_\__ )
v
k. A, (vy) _A_"L 'TT/:TI’(L:%.

Warning: Do not confuse the LDL factorization(from Gaussian elimination) of
regular symmetric matrices with the QDQ" spectral factorization of a symmetric

matrix from the spectral theorem!
Note that: If A = LDL* (from Gaussian elimination), where L is lower tri-

angular, the diagonal matrix D will typically not contain the eigenvalues on its

diagonal.
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