Lecture 32: Quick review from previous lecture

- We say that the matrix A is diagonalizable if it can be factored in the form $A=V D V^{-1}$ where D is diagonal and V is nonsingular.
- A is complete if every eigenvalue's eigenspace satisfying $\operatorname{dim} V_{\lambda}=$ the multiplicity of $\lambda .(\operatorname{det}(A-\lambda I)=0) \quad V_{\lambda}=\operatorname{Ker}(A-\lambda I)$
- A matrix is complete if and only if it is diagonalizable.
- A^{k} has the same eigenvectors as A, and the eigenvalues are just $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$.

Today we will discuss diagonalization of symmetric matrices.

- Lecture will be recorded -
- Solutions for Midterm 2 has been posted on Canvas, see "Announcements".

8.5 Eigenvalues of Symmetric Matrices

Let's focus on the theory of eigenvalues and eigenvectors for symmetric matrices, which have many nice properties.
Recall the example again.
Example 1. $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$. In Lecture 30, we have found eigenvalue $\lambda=\underline{2}, \quad$ eigenvectors $\underline{\mathbf{v}}_{1}=(-1,1,0)^{T}, \quad \underline{\mathbf{v}_{2}}=(0,0,1)^{T}$, eigenvalue $\lambda=4, \quad$ eigenvector $\mathbf{v}_{3}=(1,1,0)^{T}$.

Thus, the matrix A is complete. Moreover,

$$
A=V D V^{-1},=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & & \\
& 2 & \\
& & 4
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]^{-1} .
$$

where $D=\operatorname{diag}(2,2,4)$ and $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$.

- These eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are mutually orthogonal! $\mathbf{v}_{1} \cdot \mathbf{v}_{\mathbf{2}}=\binom{-1}{\vdots} \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=0$
- The eigenvalues of A are real lumbers, not complex. $\begin{gathered}\boldsymbol{v}_{2} \cdot \boldsymbol{v}_{3}=0 \\ \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{3}=0 .\end{gathered}$

These facts are explained by the following Spectral Theorem.

$$
\begin{aligned}
& \text { The Spectral Theorem: Let } A=A^{T} \text { be a real symmetric } n \times n \text { matrix. } \\
& \text { Then } \\
& \text { entries in } A=A^{\top} \\
& \text { 1. All the eigenvalues of } A \text { are real. are seal number. }
\end{aligned}
$$

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.
3. There is an orthonormal basis of \mathbb{R}^{n} consisting of n eigenvectors of A.

In particular, all real symmetric matrices are complete and real diagonalizable.

* Orthogonality is with respect to the standard dot product on \mathbb{R}^{n}.

Its proof will be discussed later.

Suppose A is real and symmetric, and let $\lambda_{1}, \ldots, \lambda_{n}$ denote its eigenvalues. Then the above Spectral Theorem tells us we can choose eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ (so $A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}$) that are orthonormal.

If $U=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right]$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then

$$
A=U D U^{-1}
$$

where columns of U are orthonormal bars of \mathbb{R}^{n}. It implies U is orthogonal matrix. $\left(U^{\top} U=U U^{\top}=I\right)$ and then $U^{-1}=U^{\top}$. Thus

$$
A=U D U^{\top}
$$

From Example 1, we have seen $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$ has eigenvectors

$$
\mathbf{v}_{1}=(-1,1,0)^{T}, \quad \mathbf{v}_{2}=(0,0,1)^{T}, \quad \mathbf{v}_{3}=(1,1,0)^{T} .
$$

Normalizing these vectors, we get the matrix

$$
Q=\left(\begin{array}{ccc}
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right) \quad \text { is orthogonal matax }
$$

Thus, we have the factorization

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{ccc}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \\
& =Q \operatorname{diag}(2,2,4) Q^{T}
\end{aligned}
$$

Thus, we conclude that
The Spectral Theorem: Let $A=A^{T}$ be a real symmetric $n \times n$ matrix. Then there exists an orthogonal matrix Q such that

$$
A=Q D Q^{-1}=Q D Q^{T}, \quad \text { (spectral factorization) }
$$

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal of D, while the columns of Q are the corresponding orthonormal eigenvectors.

* The term "spectrum" refers to the eigenvalues of a matrix.

$$
\begin{aligned}
& \text { (1) } k=k^{\top} \\
& \text { (2) } x^{\top} K x>0 \text { if }
\end{aligned}
$$

\S Revisit Positive definite matrix. Suppose K is positive definite (in par- $<\neq 0$. ticular, symmetric). Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ denote the thonormax eigenvector basis, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

$$
(K>0)
$$

Fact 1: A symmetric matrix K is positive definite if and only if all of its eigenvalues are strictly positive, that is, $\lambda_{j}>0$
[To see this:]
$(\Rightarrow$ Suppose $K>0$. Thus

$$
\begin{aligned}
& 0<u_{j}^{\top} \underbrace{K u_{j}}=u_{j}^{\top}\left(\lambda_{j} u_{j}\right)=\lambda_{j} u_{j}^{\top} u_{j}=\lambda_{j}\left\|u_{j}\right\|^{2} \\
&=\lambda_{j} \\
& \text { Sou. } 0<\lambda_{j}, 1 \leq j \leq n .
\end{aligned}
$$

(\Leftarrow) Since $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthornomal basis for \mathbb{R}^{n}, for any ${ }_{0}^{x}{ }^{x}, x=c_{1} u_{1}+\ldots+c_{n} u_{n}$.
Remark: The same proof shows that K is positive semidefinite if and only if all its eigenvalues $\lambda \geq 0$. $\quad x_{x}^{\top} K x=\left(c_{1} u_{1}+\ldots+c_{n} u_{n}\right)^{\top} K\left(c_{1} u_{1}+\ldots+c_{n} u_{n}\right)$

$$
{ }_{\text {MATH 4242-Week } 13-1}=\left(a u_{1}+\ldots+a_{1} u_{n}\right)^{\top}\left(c_{1} \lambda_{1} u_{1}+\ldots+c_{n} \lambda_{n} u_{n}\right)
$$

Example. In Lecture 30, we have seen that the eigenvalues of $A=\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5\end{array}\right)$
Fact 1. are 2, 4 and 6. Thus, from the A is positive definite (or $A>0$).
*Note that to see if a matrix is positive definite, one can also perform the Gaussian elimination (See In Lecture 19):
\ulcorner From Gaussian elimination. We have

Since all diagonal entries ar positive, we confirm that A is ositive definite \lrcorner
§ The proof of the Spectral Theorem.
Proof of the spectral theorem. Let $A=A^{T}$ be a real symmetric $n \times n$ matrix.

1. Show all eigenvalues of A is real.
2. The eigenvectors of A corresponding to different eigenvalues are orthogonal.
3. There is an orthonormal basis of \mathbb{R}^{n} consisting of n eigenvectors of A. (See textbook for properly 3).
Prof: 1. since $A=A^{\top}$, one has $\langle A v, w\rangle=\langle v, A w\rangle$. suppose λ is an eigenvalue meth corresponding
Recall

$$
\begin{aligned}
& \lambda=a+i b \\
& \bar{\lambda}=a-i b
\end{aligned}
$$ eigenvector v.

$$
\begin{aligned}
& \langle A v, v\rangle=\langle\lambda v, v\rangle=\pi\langle v, v\rangle . \\
& \langle v, A v\rangle=\langle v, \underline{\lambda v}\rangle=\bar{\pi}\langle v, v\rangle
\end{aligned}
$$

we get $\lambda=\pi$, so λ is real [Proof continue]
2. Suppose $\lambda \neq \mu$. and $A v=\lambda v, A w=\mu \omega$.

$$
\begin{aligned}
& (\underbrace{\lambda-\mu)}_{\substack{4 \\
0}}\langle v, w\rangle=0 \text {. Then }\langle v, w\rangle=0 \text {. }
\end{aligned}
$$

Fact: If $A=A^{T}$ is symmetric, suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are the orthonormal eigenvectors. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ all have non-zero eigenvalues, but $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n}$ have eigenvalue 0 (i.e. they're in ter A). Consequently, $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are orthogonal to $\operatorname{ker} A$, and hence
$\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ form an orthonormal basis for coimg $A=\operatorname{img} A$.
Moreover, one has
$\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n}$ form an orthonormal basis for ger $A=\operatorname{coker} A$.

$$
\begin{aligned}
& A u_{j}=त_{j}^{*} u_{j}, 1 \leq j \leq \gamma \\
& A v_{j}=\lambda_{j} v_{j} \operatorname{span}\left\{A u_{1}, \ldots, A u_{v}\right\} \\
& A u_{k}=0, r_{+1} \leq k \leq n \text {. } \\
& \text { coins } A \\
& \rightarrow \underset{\left\{u_{1}, \ldots, u_{r}\right\}}{\substack{ }} \xrightarrow{\left\{u_{r+1}, \ldots, u_{n}\right\}} \\
& \text { cokerA } \\
& \left\{u_{r+1}, \ldots, u_{n}\right\} \text {. }
\end{aligned}
$$

Example. Let $A=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$. Find an orthonormal basis for coimg A.

$$
\lambda=3
$$

$$
v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Warning: Do not confuse the $L \tilde{D} L^{T}$ factorization(from Gaussian elimination) of regular symmetric matrices with the $Q D Q^{T}$ spectral factorization of a symmetric matrix from the spectral theorem!

Note that: If $A=L \tilde{D} L^{T}$ (from Gaussian elimination), where L is lower friangular, the diagonal matrix \tilde{D} will typically not contain the eigenvalues on its diagonal.

$$
\begin{aligned}
& 0=\operatorname{det}(A-\lambda I)=\lambda(\lambda-2)(\Lambda-3) . \\
& \lambda=0, \quad 2,3 . \\
& \lambda=0 . \operatorname{Ker}(A-0 I)=\operatorname{Ker} A \cdot \text { eigenvector } \\
& v_{3}=\binom{1}{6} \text {. } \\
& \lambda=2 \text {, } \operatorname{Ker}(A-2 I)=\operatorname{Ker}\left(\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \text {. } \\
& \text { eigenvector } \quad v_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \text {. }
\end{aligned}
$$

