Lecture 32: Quick review from previous lecture

- We say that the matrix A is **diagonalizable** if it can be factored in the form $A = VDV^{-1}$ where D is diagonal and V is nonsingular.
- A is complete if every eigenvalue's eigenspace satisfying dim V_{λ} = the multiplicity of λ . (det(A- λz) = 0) $U_{\lambda} = \text{Ker}(A \lambda z)$
- A matrix is complete if and only if it is diagonalizable.
- A^k has the same eigenvectors as A, and the eigenvalues are just $\lambda_1^k, \ldots, \lambda_n^k$.

Today we will discuss diagonalization of symmetric matrices.

$$A = V D V' = [v_1 \dots v_n] \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}^T$$

- Lecture will be recorded -

• Solutions for Midterm 2 has been posted on Canvas, see "Announcements".

8.5 Eigenvalues of Symmetric Matrices

Let's focus on the theory of eigenvalues and eigenvectors for **symmetric matri-ces**, which have many nice properties.

Recall the example again.
Example 1.
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. In Lecture 30, we have found
eigenvalue $\lambda = 2$, eigenvectors $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$,
eigenvalue $\lambda = 4$, eigenvector $\mathbf{v}_3 = (1, 1, 0)^T$.
Thus, the matrix A is complete. Moreover,
 $A = VDV^{-1}, = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}^T$.
where $D = \text{diag}(2, 2, 4)$ and $V = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$.
• These eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are mutually orthogonal! $\mathbf{v}_1 \cdot \mathbf{v}_2 = (\frac{1}{2}) \cdot (\frac{0}{2}) = 0$
• The eigenvalues of A are real numbers, not complex. $\mathbf{v}_2 \cdot \mathbf{v}_3 = 0$.

These facts are explained by the following Spectral Theorem.

The Spectral Theorem: Let $A = A^T$ be a real symmetric $n \times n$ matrix. Then $A = A^T$

are real number

- 1. All the eigenvalues of A are real.
- 2. Eigenvectors corresponding to **distinct** eigenvalues are orthogonal.
- 3. There is an orthonormal basis of \mathbb{R}^n consisting of n eigenvectors of A.

In particular, all real symmetric matrices are <u>complete</u> and <u>real diagonalizable</u>.

* Orthogonality is with respect to the standard dot product on \mathbb{R}^n . Its proof will be discussed later. Suppose A is **real and symmetric**, and let $\lambda_1, \ldots, \lambda_n$ denote its eigenvalues. Then the above Spectral Theorem tells us we can choose eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$ (so $A\mathbf{u}_i = \lambda_i \mathbf{u}_i$) that are **orthonormal**.

If
$$U = [\mathbf{u}_1, \dots, \mathbf{u}_n]$$
 and $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, then
 $A = \bigcup D \bigcup^{-1}$,
where columns of \bigcup are orthonormal basis of \mathbb{R}^n .
It implies \bigcup is orthogonal matrix. $(\bigcup^T \bigcup = \bigcup \bigcup^T = \mathbf{I})$
and then $\bigcup^T = \bigcup^T$. Thus
 $A = \bigcup D \bigcup^T$.
From Example 1, we have seen $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ has eigenvectors
 $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$.

Normalizing these vectors, we get the matrix

$$Q = \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{pmatrix} \quad \text{is orthogonal matrix}$$

Thus, we have the factorization

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

= $\begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}$
= $Q \operatorname{diag}(2, 2, 4) Q^{T}$

MATH 4242-Week 13-1

Thus, we conclude that

The Spectral Theorem: Let $A = A^T$ be a real symmetric $n \times n$ matrix. Then there exists an orthogonal matrix Q such that

$$A = QDQ^{-1} = QDQ^T,$$

(spectral factorization)

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal of D, while the columns of Q are the corresponding orthonormal eigenvectors.

* The term "spectrum" refers to the eigenvalues of a matrix.

§ Revisit Positive definite matrix. Suppose K is positive definite (in par- $\overset{\checkmark}{\overset{\checkmark}}$, $\overset{\checkmark}{\overset{\circ}}$) icular, symmetric). Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ denote the orthonormal eigenvector basis, with eigenvalues $\lambda_1, \ldots, \lambda_n$. (K > 0)

Fact 1: A symmetric matrix K is positive definite if and only if all of its eigenvalues are strictly positive, that is, $\lambda_j > 0$

[To see this:] (=>) Suppose K > 0. Thus $0 < u_j^T K u_j = u_j^T (\lambda_j u_j) = \lambda_j u_j^T u_j = \lambda_j ||u_j||^2$ $\leq 0 < 0 < \lambda_j$, $1 \leq j \leq N$. (=) Since $\{u_1, \dots, u_n\}$ is an orthornormal basis for $I\mathbb{R}^n$, for any $x < x = C_i u_i + \dots + C_n u_n$. Remark: The same proof shows that K is positive semidefinite if and only if all its eigenvalues $\lambda \ge 0$. $X^T K x = (c_i u_i + \dots + C_n u_n)^T K (c_i u_i + \dots + C_n u_n)$ $= (Gu_i + \dots + Gu_n)^T K (c_i u_i + \dots + C_n \lambda_n u_n)$ $MATH 4242-Week 13-1 [u_j^T u_j = 0, i^{\pm j}] \Rightarrow = 4 \lambda_i c_i^2 + \dots + \lambda_n c_n^2 > Q_{pring 2020}$ **Example.** In Lecture 30, we have seen that the eigenvalues of $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5 \end{pmatrix}$ are 2, 4 and 6. Thus, from the Spectral Theorem, since all eigenvalues are positive, A is positive definite (or A > 0).

*Note that to see if a matrix is positive definite, one can also perform the Gaussian elimination (See In Lecture 19):

 $3 + \frac{1}{5} = \left(\begin{array}{c} 2 & 0 \\ 0 & 5 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \end{array} \right).$ Since all diagonal entries are positive, we confirm that A is positive definite. \Box

§ The proof of the Spectral Theorem.

Proof of the spectral theorem. Let $A = A^T$ be a real symmetric $n \times n$ matrix.

- 1. Show all eigenvalues of A is real.
- 2. The eigenvectors of A corresponding to different eigenvalues are orthogonal.

3. There is an orthonormal basis of \mathbb{R}^{n} consisting of n eigenvectors of A. (See Text book for property 3). Prost: 1. Since $A = A^{T}$, one has $\langle A \vee, \omega \rangle = \langle \vee, A \omega \rangle$. Suppose π is an eigenvalue with corresponding. Pecall eigenvector ∇ . $\pi = a + ib$ $\langle A \vee, \vee \rangle = \langle \Lambda \vee, \vee \rangle = \pi \langle \vee, \vee \rangle$. $\pi = a - ib$ $\langle \vee, A \vee \rangle = \langle \vee, \pi \vee \rangle = \pi \langle \vee, \vee \rangle$. MATH 4242-Week 13-1 Thus, $\pi \langle \vee, \vee \rangle = \pi \langle \vee, \vee \rangle$.

[Proof continue]
2. Suppose
$$\pi \neq \mu$$
 and $Av = \pi v$, $Aw = \mu w$.
 $\langle \pi v, w \rangle = \langle Av, w \rangle = \langle v, Aw \rangle = \langle v, \mu w \rangle$.
 $\langle \pi v, w \rangle = \langle Av, w \rangle = \langle v, Aw \rangle = \langle v, \mu w \rangle$.
 $\langle \pi - \mu \rangle$
 $\langle n - \mu \rangle \langle v, w \rangle = 0$. Then $\langle v, w \rangle = 0$.
 $\langle \pi - \mu \rangle$

Fact: If $A = A^T$ is symmetric, suppose $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are the orthonormal eigenvectors. Suppose $\mathbf{u}_1, \ldots, \mathbf{u}_r$ all have non-zero eigenvalues, but $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_n$ have eigenvalue 0 (i.e. they're in ker A). Consequently, $\mathbf{u}_1, \ldots, \mathbf{u}_r$ are orthogonal to ker A, and hence

 $\mathbf{u}_1, \ldots, \mathbf{u}_r$ form an orthonormal basis for coimg $A = \operatorname{img} A$.

Moreover, one has

 $\mathbf{u}_{r+1}, \dots, \mathbf{u}_n \text{ form an orthonormal basis for } \ker A = \operatorname{coker} A.$ $A u_j = \overline{\mathcal{N}}_i u_j, i \leq j \leq r$ $A u_k = 0 \quad r + | \leq k \leq n.$ $\operatorname{comg} A$ $\operatorname{comg} A$ $\operatorname{comg} A$ $\operatorname{comg} A$ $\operatorname{coker} A$ $\left\{ u_{r+1}, \dots, u_n \right\}.$ $\operatorname{coker} A$ $\left\{ u_{r+1}, \dots, u_n \right\}.$

Example. Let $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Find an orthonormal basis for coimg A. $O=ded(A-\lambda I) = \lambda(\lambda-2)(\lambda-3).$ $\lambda = 0, 2, 3.$ Ker (A-02) = Ker A . erye $V_3 = \begin{pmatrix} 1 \\ \zeta \end{pmatrix}$ _. Ker (A-2I) = Ker $\begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. $\lambda = 2$ eigenverter $V_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\boldsymbol{\vee}_{2} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{1} \end{pmatrix}$ comg /s { V1. V2 } . Ans: { V1 . V2 ker A, [U3]

Warning: Do not confuse the $L\tilde{D}L^T$ factorization(from Gaussian elimination) of regular symmetric matrices with the QDQ^T spectral factorization of a symmetric matrix from the spectral theorem!

Note that: If $A = L\tilde{D}L^T$ (from Gaussian elimination), where L is lower triangular, the diagonal matrix \tilde{D} will typically **not** contain the eigenvalues on its diagonal.