Lecture 33: Quick review from previous lecture

- The Spectral Theorem: Let $A=A^{T}$ be a real symmetric $n \times n$ matrix. Then

1. All the eigenvalues of A are real.
2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.
3. There is an orthonormal basis of \mathbb{R}^{n} consisting of n eigenvectors of A.
4. Then there exists an orthogonal matrix Q such that

$$
A=Q D Q^{-1}=Q D Q^{T}, \quad(\text { spectral factorization })
$$

where D is a real diagonal matrix.

- A symmetric matrix K is positive definite if and only if all of its eigenvalues are strictly positive, that is, $\lambda_{j}>0$

Today we will discuss diagonalization of symmetric matrices.

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda & \alpha_{0} \\
0 & \lambda_{n}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]^{-1} \\
& =Q D Q^{\top} .
\end{aligned}
$$

- Lecture will be recorded -
- Instructions and details for Final Exam has been posted on Canvas, see "Announcements".

Warning: Do not confuse the $L \tilde{D} L^{T}$ factorization(from Gaussian elimination) of regular symmetric matrices with the $Q D Q^{T}$ spectral factorization of a symmetric matrix from the spectral theorem!

Note that: If $A=L \tilde{D} L^{T}$ (from Gaussian elimination), where L is lower friangular, the diagonal matrix \tilde{D} will typically not contain the eigenvalues on its diagonal.

See the following example.
Example.
$A \xrightarrow{(2)-1 / 2})^{T h e} L \tilde{D} L^{T}$ factorization of $A=\left(\begin{array}{ll}4 & 2 \\ 2 & 4 \\ 0 & 2\end{array}\right)$ is $=0$

$$
\begin{aligned}
& A=L U=L\left[\begin{array}{ll}
4 & 0 \\
0
\end{array}\right] L^{\top}\left(\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right)=\left(\begin{array}{rr}
1 & 0 \\
1 / 2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 / 2 & 1
\end{array}\right)
\end{aligned}
$$

$L=\left(\begin{array}{ll}1 & 0 \\ 1 / 8 & 1 \\ 1 & w e v\end{array}\right)$
However, the spectral factorization of A is

$$
\begin{aligned}
& \left(\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
6 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \\
& \boldsymbol{O}=\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{Z})=(\boldsymbol{\lambda}-6)(\boldsymbol{\lambda}-\mathbf{2}) . \boldsymbol{\lambda}=6,2 .
\end{aligned}
$$

\S Some Geometric observation.
In \mathbb{R}^{2}, the spectral factorization of a symmetric matrix A has a natural geometric interpretation.

Suppose that A is an symmetric 2×2 matrix. Let \mathbf{u}, \mathbf{v} be the orthonormal eigenvector basis in \mathbb{R}^{2} with eigenvalues λ, μ.
Q: What is the image of the matrix A on the unit circle in \mathbb{R}^{2} ?

Let $\vec{x}=(x, y)$ in \mathbb{R}^{2} with $x^{2}+y^{2}=1$. We can wite

$$
\vec{x}=\underline{\langle\vec{x}}, u\rangle u+\langle\vec{x}, v\rangle v, \quad\|\vec{x}\|^{2}=\langle\vec{x}, u\rangle^{2}+\langle\vec{x}, u\rangle^{2}=x^{2}+y^{2}=1
$$

$$
A \vec{x}=A(\langle\vec{x}, u\rangle u+\langle\vec{x}, v\rangle v)=\langle\vec{x}, u\rangle A u+\langle\vec{x}, v\rangle A v
$$

$$
=\underbrace{\lambda\langle\vec{x}, u\rangle}_{a} u+\frac{\mu\langle\vec{x}, v\rangle}{b} v
$$

$\operatorname{Thus}_{\text {MATH 4242-Week } 14-1}\left(\frac{a}{\pi}\right)^{2}+\left(\frac{b}{\mu}\right)^{2}=\langle\stackrel{\rightharpoonup}{x}, u\rangle^{2}+\left\langle\frac{a}{x}, u\right\rangle^{2}=1$

Thus, we have shown that A maps the unit circle in \mathbb{R}^{2} to the ellipse

$$
\left\{a \mathbf{u}+b \mathbf{v}: \frac{a^{2}}{\lambda^{2}}+\frac{b^{2}}{\mu^{2}}=1\right\}
$$

The principal directions of this ellipse are the eigenvectors \mathbf{u} and \mathbf{v}, and the principal stretches are the eigenvalues λ and μ.

So the eigenvectors and values provide a geometric interpretation of the action of A on \mathbb{R}^{2}.
Example. Consider the quadratic form $\quad q(x)=\langle A x, x\rangle=x^{\top} A x$.

$$
q(x)=3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}=\left(x_{1} x_{2}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Using the spectral factorization to diagonalized this quadratic form. A
A is seal -symmetric matrix. $0=\operatorname{det}(A-\lambda I) \Rightarrow \lambda=2,4$.

$$
\begin{aligned}
& \lambda=2: A-2 I=\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right) . \quad v_{1}=\binom{1}{-1} \Rightarrow u_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1} . \\
& \lambda=4: \quad A-4 I=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right), \quad v_{2}=\binom{1}{1} \Rightarrow u_{2}=\frac{1}{\sqrt{2}}\binom{1}{1} .
\end{aligned}
$$

So. spectral factorization of A is

$$
\begin{aligned}
A & =Q\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right] Q^{\top} \text {, where } Q=\left[\begin{array}{ll}
u, & u_{2}
\end{array}\right] \\
& =Q \quad D Q^{\top} . \\
q(x) & =x^{\top} A x=x^{\top} Q D Q^{\top} x=\left(Q^{\top} x\right)^{\top} D(Q x)
\end{aligned}
$$

Let $y=Q^{\top} x$. Then $q(x)=y^{\top} D y=2 y_{1}^{2}+4 y_{2}^{2}$. x
 - $x \neq 0, q(x)>0$.
§ Revisit Matrix norm.
The eigenvalues of a symmetric matrix A allow us to compute its matrix norm and its Frobenius norm easily.
§ Frobenius norm.

$$
\begin{aligned}
& E X=A=\left(\begin{array}{l}
1 \\
3
\end{array}\binom{2}{4}\right. \\
& \|A\|_{I}=\sqrt{1^{2}+2^{2}+3^{2}+4^{2}} .
\end{aligned}
$$

Recall that the Frobenius norm of a matrix A is defined by

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}} \quad \begin{aligned}
\left\|a_{1}\right\|_{2}^{2} & =1^{2}+3^{2} \\
\left\|a_{2}\right\|_{2}^{2}+\left\|a_{2}\right\|^{2} & =2^{2}+4^{2}
\end{aligned}
$$

Then
Let A be a real, symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}}
$$

[To see this] Let $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$. we can factorize A into $A=Q D Q^{\top}, Q:$ orthogonal, $D=\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ 0 & \ddots & \lambda_{n}\end{array}\right)$
Since Q is orthogonal, $\|Q A\|_{F}=\|A Q\|_{F}=\|A\|_{F}$.
prof:

$$
\begin{aligned}
\|:\| Q\left\|_{F}^{2}=\right\|\left[Q a_{1}, \cdots, Q a_{n}\right] \|_{F}^{2} & =\left\|Q a_{1}\right\|_{2}^{2}+\cdots+\left\|Q a_{n}\right\|_{2}^{2} \\
& =\left\|a_{1}\right\|_{2}^{2}+\cdots+\left\|a_{n}\right\|_{2}^{2} \\
& =\|A\|_{F}^{2} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\|A\|_{F}=\left\|\underline{Q} \underline{Q}^{\top}\right\|_{F}=\left\|D Q^{\top}\right\|_{F} & =\|D\|_{F} \\
& =\sqrt{\lambda_{1}^{2}+\operatorname{sinin}+2 \lambda_{n}^{2}}
\end{aligned}
$$

Example. We found the eigenvalues of $A=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$ to be 0,2 and 3 .
The sum of squares of the eigenvalues is $2^{2}+3^{2}=13$.
The squared Frobenius norm of the entries of A is

$$
\left.\|A\|_{F}^{2}=\underline{1}^{2}+\underline{(-1}\right)^{2}+{\underline{(-1)^{2}}}^{2}+\underline{1}^{2}+\underline{3}^{2}=\underline{13}=2^{2}+3^{2}
$$

verifying the general formula in this case.
§ Natural Matrix norm. More interesting is using the eigenvalues to compute the matrix norm of a real symmetric matrix A :
Let's consider $\|\mathbf{x}\|_{2}=\frac{\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}}{\|A\|=\max \left\{\|A \mathbf{u}\|_{2}:\|\mathbf{u}\|_{2}=1\right\}}$. The natural matrix norm of A is
We write $A=Q D \overline{Q^{\top}}, \overline{Q:}$ orthogonal, $D=\left(\begin{array}{cc}\lambda_{b} & 0 \\ 0 & \lambda_{n}\end{array}\right)$.

$$
\begin{aligned}
\|u\|_{2}=1 \cdot\|A u\|_{2}=\left\|Q D Q^{\top} u\right\|_{2} & =\left\|D Q^{\top} u\right\|_{2} . \\
& =\|D \tilde{u}\|_{2}, \text { where }
\end{aligned}
$$

$$
\tilde{u}=Q^{\top} u . \text { Then }\|\tilde{u}\|_{2}=\left\|Q^{\top} u\right\|_{2}=\|u\|_{2}=1
$$

Thus, $\|A\|=\max \left\{\|A n\|_{2} \mid\|u\|_{2}=1\right\}$.

$$
=\max _{\text {clude that }}\left\{\|D \tilde{u}\|_{2} \mid\|\tilde{u}\|_{2}=1\right\}=\|D\|=\max _{\mid \leq j \leq n}\left|\lambda_{j}\right| .
$$

Therefore, we conclude that

$$
\|A\|=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|
$$

Example. We found the eigenvalues of $A=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$ to be 0,2 and 3 .
Then the natural matrix norm of A is 3 .

$$
\|A\|=\max \{101,121,|31|=3
$$

Q: Which vector in \mathbb{R}^{n} undergoes the largest change in length under the action of A ? That is, which unit vector \mathbf{x} maximizes $\|A \mathbf{x}\|_{2}$?

Fact: Suppose that a symmetric matrix A has real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ satisfying

$$
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

with corresponding orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. Then
(10)

$$
\left|\lambda_{1}\right|=\max \left\{\|A \mathbf{x}\|_{2}:\|\mathbf{x}\|_{2}=1\right\}, \quad\left|\lambda_{n}\right|=\min \left\{\|A \mathbf{x}\|_{2}:\|\mathbf{x}\|_{2}=1\right\}
$$

The maximal value of $\|A \mathbf{x}\|_{2}$ is achieved when $\mathbf{x}= \pm \mathbf{u}_{1}$, the unit eigenvector associated with the eigenvalue λ_{1}.
(2 die minimal value of $\|A \mathbf{x}\|_{2}$ is achieved when $\mathbf{x}= \pm \mathbf{u}_{n}$, the unit eigenvector associated with the eigenvalue λ_{n}.
phot: For any $x,\|x\|_{2}=1$, we can write

$$
x=\left\langle x, u_{1}\right\rangle u_{1}+\cdots+\left\langle x, u_{n}\right\rangle u_{n} \text {. with }\left\langle x, u_{1}\right\rangle^{2}+\cdots+\left\langle x, u_{n}\right\rangle^{2}=1 \text {. }
$$

1.

$$
\begin{aligned}
\|A x\|_{2}^{2} & =\left\|A\left(\left\langle x, u_{1}\right\rangle u_{1}+\cdots+\left\langle x, u_{n}\right\rangle u_{n}\right)\right\|_{2}^{2} \\
& =\left\|\left\langle x, u_{1}\right\rangle \lambda_{1} u_{1}+\cdots+\left\langle x, u_{n}\right) \lambda_{n} u_{n}\right\|_{2}^{2} \\
& =\lambda_{1}^{2}\left\langle x, u_{1}\right\rangle^{2}+\cdots+\lambda_{n}^{2}\left\langle x, u_{n}\right\rangle^{2} \\
& \leqslant \lambda^{\sin \varepsilon} \lambda_{1}^{2}\left\langle x, u_{1}\right\rangle^{2}+\lambda_{1}\left\langle x, u_{2}\right\rangle^{2}+\cdots \lambda_{1} \mid \\
& =\lambda_{1}^{2}\left(\left\langle x, u_{1}\right\rangle^{2}+\cdots+\left\langle x, u_{n}\right\rangle^{2}\right)=\lambda_{1}^{2}
\end{aligned}
$$

So. $\max \left\{\|A x\|_{2} \mid\|x\|_{2}=1\right\} \leq\left|\lambda_{1}\right|$. $\left\|A u_{1}\right\|=\left|\lambda_{1}\right|\left\|u_{1}\right\|=\left|\lambda_{1}\right|$.
Thus. $\max \left\{\|A x\|_{2} \mid\|x\|_{2}=1\right\}=\left|\pi_{1}\right|$.

