Lecture 34: Quick review from previous lecture

Let A be a real, symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ with corresponding orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$.

• Let $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$. The natural matrix norm of A is $\|A\| = \max\{\|A\mathbf{u}\|_2 : \|\mathbf{u}\|_2 = 1\}.$

Then $||A|| = \max_{1 \le i \le n} |\lambda_i|$

• The **Frobenius norm** of a matrix A is defined by

$$||A||_F = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2}$$

Then $||A||_F = \sqrt{\lambda_1^2 + \ldots + \lambda_n^2}$.

• Suppose that $|\lambda_1| \geq \cdots \geq |\lambda_n|$. Then

$$\lambda_1 = \max\{ \|A\mathbf{x}\|_2 : \|\mathbf{x}\|_2 = 1 \}, \quad |\lambda_n| = \min\{ \|A\mathbf{x}\|_2 : \|\mathbf{x}\|_2 = 1 \}.$$

The maximal value of $||A\mathbf{x}||_2$ is achieved when $\mathbf{x} = \pm \mathbf{u}_1$.

The **minimal value** of $||A\mathbf{x}||_2$ is achieved when $\mathbf{x} = \pm \mathbf{u}_n$.

Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

• Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".

§ Optimization principles for eigenvalues of symmetric matrices Suppose that a symmetric matrix A has real eigenvalues

$$\lambda_1 \geq \cdots \geq \lambda_n$$

and has an orthonormal eigenvector basis $\mathbf{u}_1, \ldots, \mathbf{u}_n$. Its spectral factorization is

$$A = QDQ^{T} = \begin{bmatrix} u_{1} \cdots u_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & y \\ \lambda_{1} & \lambda_{n} \end{bmatrix} \begin{bmatrix} u_{1} \cdots u_{n} \end{bmatrix}^{T}$$
Consider the associated quadratic form:
Taking any \times n iRⁿ, $\chi = C, u_{1} + \cdots + C_{n}u_{n}$ with $\|x\|^{2} = C^{2} + \cdots + C^{2}$.
() $q(\mathbf{x}) = \langle A\mathbf{x}, \mathbf{x} \rangle$.
 $C_{\mathbf{j}} = \langle \mathbf{x}, \mathbf{u}_{\mathbf{j}} \rangle$.
 $= \langle A(C_{1}u_{1} + \cdots + C_{n}u_{n}), C_{1}u_{1} + \cdots + C_{n}u_{n} \rangle$
 $= \langle C, \Lambda, u_{1} + \cdots + C_{n}u_{n} \rangle$, $\zeta = \langle U_{1}, u_{1} + \cdots + C_{n}\Lambda_{n}u_{n} \rangle$
 $= \langle C, \Lambda, u_{1} + \cdots + C_{n}\Lambda_{n}u_{n} \rangle$
 $= \langle C, \Lambda, u_{1} + \cdots + C_{n}\Lambda_{n}u_{n} \rangle$
 $= 1, i = \mathbf{j} \subseteq C_{1}^{2}\Lambda_{1} + C_{2}^{2}\Lambda_{2} + \cdots + C_{n}^{2}\Lambda_{n}$
 $= 1, i = \mathbf{j} \subseteq C_{1}^{2}\Lambda_{1} + C_{2}^{2}\Lambda_{1} + \cdots + C_{n}^{2}\Lambda_{n}$
 $= \Lambda, (C_{1}^{2} + \cdots + C_{n}^{2}) = \Lambda_{1}$
 $q(u_{1}) = \langle Au_{1}, u_{1} \rangle = \Lambda, \langle u_{1}, u_{2} \rangle = \Lambda_{1}$
Thus, we have the result:
 $q(\mathbf{x}) = \langle Au_{n}, x \rangle \geq C_{1}^{2}\Lambda_{n} + \cdots + C_{n}^{2}\Lambda_{n}$
Thus, we have the result:
 $q(\mathbf{x}) = \langle Au_{n}, x \rangle \geq C_{1}^{2}\Lambda_{n} + \cdots + C_{n}^{2}\Lambda_{n}$
 $\lambda_{1} \geq \cdots \geq \lambda_{n}$.
 $q(u_{n}) = \Lambda_{n}$

Then

 $\lambda_1 = \max\{\langle A\mathbf{x}, \mathbf{x} \rangle : \|\mathbf{x}\|_2 = 1\}, \qquad \lambda_n = \min\{\langle A\mathbf{x}, \mathbf{x} \rangle : \|\mathbf{x}\|_2 = 1\}.$

The **maximal value** is achieved when $\mathbf{x} = \pm \mathbf{u}_1$, the unit eigenvector associated with the largest eigenvalue λ_1 .

The **minimal value** is achieved when $\mathbf{x} = \pm \mathbf{u}_n$, the unit eigenvector associated with the smallest eigenvalue λ_n .

Example. Consider the matrix

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$
Find max{ $\langle A\mathbf{x}, \mathbf{x} \rangle : \|\mathbf{x}\|_2 = 1$ } and min{ $\langle A\mathbf{x}, \mathbf{x} \rangle : \|\mathbf{x}\|_2 = 1$ }.

$$O = \det(A - \lambda I) = \Lambda^2 - 6\Lambda + 8, \quad \Lambda = 4, Z.$$

§ Similar matrices

Definition: Let A, B be two square matrices. We say that A is **similar** to B if there exists an invertible (nonsingular) matrix S such that

$$A = SBS^{-1}.$$

Fact: If A and B are similar, then they have the <u>same</u> eigenvalues. Suppose that $A\mathbf{v} = \lambda \mathbf{v}$ and λ is the eigenvalue. Then $S^{-1}\mathbf{v}$ is an eigenvector of B with eigenvalue λ .

Similarly, if **w** is an eigenvector of B with eigenvalue μ , then S**w** is an eigenvector of A with eigenvalue μ .

1. Characteristic polynomial of
$$A$$

 $P_A(\Lambda) = det (A - \Lambda I)$
 $= det (SBS^{-1} - \Lambda I)$
 $= det (SBS^{-1} - \Lambda SS^{-1})$
 $= det (S(B - \Lambda I)S^{-1})$
 $= det S \cdot det (B - \Lambda I) det (S^{-1}) = det (B - \Lambda I)$
For recample, 2. $Av = \Lambda v$
MATH 4242-Week 14-2 $SBS^{-1}v = \Lambda v$. $\Rightarrow B(S^{-1}v) = \Lambda(S^{-1}v) \stackrel{eigenvector}{\to} B^{DITHE 2020}$

Example. Let's consider $A = SBS^{-1} = \begin{pmatrix} 3 & 2 \\ 0 & 2 \end{pmatrix}$, where $S = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ and

 $B = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}.$ It is clear that **B** is similar to **A**. The matrix B has eigenvalues 3 and 2, with eigenvectors $\mathbf{w}_1 = (1, 1)^T$ and $\mathbf{w}_2 = (2, 1)^T$ (check this!).

Then A also has eigenvalues 3 and 2, but has eigenvectors

$$S\mathbf{w}_1 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad S\mathbf{w}_2 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Remark: In particular, if A is complete (implies A is diagonalizable), then A is similar to a diagonal matrix D:

$$A = VDV^{-1}.$$

8.7 Singular Values

While we've seen that eigenvectors and eigenvalues are powerful tools for understanding matrices and operators, they have limitations.

- 1. Only square matrices can have eigenvectors.
- 2. Not every matrix has a basis of eigenvectors (only complete/diagonalizable matrices do).
- 3. Even when an eigenbasis exists, unless the matrix is symmetric this basis will not be orthogonal.
- 4. Also, non-symmetric matrices may have complex eigenvalues/eigenvectors.

§ Singular value decomposition (SVD)

We study the factorization of a non-square matrix. The technique is widely used in data analysis.

The key observation is that for any real matrix $A = A_{m \times n}$ (not necessarily square), the matrices

$$AA^T$$
, A^TA

are both real, symmetric matrices (of sizes m-by-m and n-by-n, respectively).

Let's start by reviewing some facts.

Fact: Let $A \in M_{m \times n}$ ($m \times n$ real matrices). Then the following are true.

- 1. $A^T A$ and $A A^T$ are symmetric.
- 2. The kernel of $A^T A$ = the kernel of A.
- 3. $rank(A) = rank(A^T A)$.

Consequently, the spectral theorem applies to these matrices AA^T , A^TA , even when A is NOT square. (Recall that A^TA is called the *Gram matrix* of A, while AA^T is the *Gram matrix* of A^T .)

MATH 4242-Week 14-2

(A=Amxn) The SVD will be based on a factorization of the $n \times n$ matrix $A^T A$ with rank r: Since ATA is symmetric with rank ATA = r, we can find eigenvalues nonzero x+1,..., h with orthonormal eigenvectors Vi,..., Vr, Vr+1, ..., Vn, that is, $(A^{T}A)v_{j} = \lambda_{j}v_{j}, \quad i \leq j \leq r$ $i(A^{T}A)_{V_{1c}} = 0, \quad k = r + 1, ..., n$ Thus, Fact in Lecture 32, coing (ATA) has orthonormal basis & U. Ur | and Ker (ATA) has ONB { Vr+1, ..., Vn}. In a dition. AT A and A have the same Kernel and comg. EU, ,..., Uy] mg/ comq A $\{\sigma_1, \ldots, \sigma_r\}$ A Ker A {Vrt1,..., Vn} wher A Now, recall EVI,.... Vrl ONB tor compA, then { Av, ..., Avr is a basis for ing A $\langle Av_i, Av_j \rangle = \langle A^T Av_i, v_j \rangle$ $= \langle \lambda_i v_i, v_j \rangle$ Spring 2020

MATH 4242-Week 14-2

M

Definition: The square roots of the eigenvalues of $A^T A$ are called the **singular** values $\sigma_1, \sigma_2, \cdots, \sigma_n$ of an $m \times n$ matrix A.

Thus, we have shown that

Full SVD for a matrix:

Let A be an $m \times n$ matrix of rank r with the positive singular values

 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r,$

and let Σ be the $m \times n$ matrix defined by

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & 0 & \sigma_r & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$
Then there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that
$$A = U \Sigma V^T. \quad (F_n (I \leq V P)).$$

Example. Find SVD for $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$.

Solution: