Lecture 34: Quick review from previous lecture

Let A be a real, symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with corresponding orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

- Let $\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$. The natural matrix norm of A is

$$
\|A\|=\max \left\{\|A \mathbf{u}\|_{2}:\|\mathbf{u}\|_{2}=1\right\}
$$

Then $\|A\|=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$

- The Frobenius norm of a matrix A is defined by

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}}
$$

Then $\|A\|_{F}=\sqrt{\lambda_{1}^{2}+\ldots+\lambda_{n}^{2}}$.

- Suppose that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then

$$
\left|\lambda_{1}\right|=\max \left\{\|A \mathbf{x}\|_{2}:\|\mathbf{x}\|_{2}=1\right\}, \quad\left|\lambda_{n}\right|=\min \left\{\|A \mathbf{x}\|_{2}:\|\mathbf{x}\|_{2}=1\right\} .
$$

The maximal value of $\|A \mathbf{x}\|_{2}$ is achieved when $\mathbf{x}= \pm \mathbf{u}_{1}$.
The minimal value of $\|A \mathbf{x}\|_{2}$ is achieved when $\mathbf{x}= \pm \mathbf{u}_{n}$.

Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

- Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".
\S Optimization principles for eigenvalues of symmetric matrices
Suppose that a symmetric matrix A has real eigenvalues

$$
\lambda_{1} \geq \cdots \geq \lambda_{n}
$$

and has an orthonormal eigenvector basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. Its spectral factorization is

$$
A=Q D Q^{T} .=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\lambda}_{1} & \\
& 0 \\
0 & \boldsymbol{\lambda}_{n}
\end{array}\right]\left[u_{1} \ldots u_{n}\right]^{\top} .
$$

Consider the associated quadratic form:
Taking any x in $\mathbb{R}^{n}, x=c_{1} u_{1}+\cdots+c_{n} u_{n}$ with $\|x\|=1=c_{1}^{2}+\cdots+c_{n}^{2}$.

$$
c_{j}=\left\langle x, u_{j}\right\rangle
$$

NE

$$
\begin{equation*}
q(\mathbf{x})=\langle A \mathbf{x}, \mathbf{x}\rangle \tag{1}
\end{equation*}
$$

$$
=\left\langle A\left(c_{1} u_{1}+\cdots+c_{n} u_{n}\right), \quad c_{1} u_{1}+\cdots+c_{n} u_{n}\right\rangle
$$

$$
=\left\langle c_{1} \lambda_{1} n_{1}+\cdots+c_{n} \lambda_{n} u_{n}, \quad \downarrow\right\rangle
$$

$$
\begin{aligned}
\left\langle u_{i}, u_{j}\right\rangle=0, i \neq j & =c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{2}+\cdots+c_{n}^{2} \lambda_{n} \\
=1, i=j & \leqslant c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{1}+\cdots+c_{n}^{2} \lambda_{1} \\
& =\lambda_{1}\left(c_{1}^{2}+\cdots+c_{n}^{2}\right)=\lambda_{1} \\
q\left(u_{1}\right) & =\left\langle A u_{1}, u_{1}\right\rangle=\lambda_{1}\left\langle u_{1}, u_{1}\right\rangle=\lambda_{1}
\end{aligned}
$$

Thus, we have the result:: $2 q(x)=\langle A x, x\rangle \geq c_{1}^{2} \lambda_{n}+\ldots+c_{n}^{2} \lambda_{n}$
Fact: Suppose that a symmetric matrix A has $\stackrel{=}{\text { real }}{ }^{\lambda}$ eigenvalues $\left(c^{2}+\cdots+c_{n}^{2}\right)=\lambda_{n}$

$$
\lambda_{1} \geq \cdots \geq \lambda_{n} . \quad q\left(u_{n}\right)=\lambda_{n} .
$$

Then

$$
\lambda_{1}=\max \left\{\langle A \mathbf{x}, \mathbf{x}\rangle:\|\mathbf{x}\|_{2}=1\right\}, \quad \lambda_{n}=\min \left\{\langle A \mathbf{x}, \mathbf{x}\rangle:\|\mathbf{x}\|_{2}=1\right\}
$$

The maximal value is achieved when $\mathbf{x}= \pm \mathbf{u}_{1}$, the unit eigenvector associated with the largest eigenvalue λ_{1}.
The minimal value is achieved when $\mathbf{x}= \pm \mathbf{u}_{n}$, the unit eigenvector associated with the smallest eigenvalue λ_{n}.

Example. Consider the matrix

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$

$$
0=\operatorname{det}(A-\lambda I)=\lambda^{2}-6 \pi+8, \quad \pi=4,2
$$

§ Similar matrices
Definition: Let A, B be two square matrices. We say that A is similar to B if there exists an invertible (nonsingular) matrix S such that

$$
A=S B S^{-1}
$$

Fact: If A and B are similar, then they have the same eigenvalues
Suppose that $A \mathbf{v}=\lambda \mathbf{v}$ and λ is the eigenvalue. Then $S^{-1} \mathbf{v}$ is an eigenvector of B with eigenvalue λ.

Similarly, if \mathbf{w} is an eigenvector of B with eigenvalue μ, then $S \mathbf{w}$ is an eigenvector of A with eigenvalue μ.

1. Characteristic polynomial of A

$$
\begin{aligned}
& P_{A}(\lambda)=\operatorname{det}(A-\lambda I) \\
&=\operatorname{det}\left(S B S^{-1}-\lambda I\right) \\
&=\operatorname{det}\left(S B S^{-1}-\lambda S S^{-1}\right) \\
&=\operatorname{det}\left(S(B-\lambda I) S^{-1}\right) \\
&=\operatorname{det} S \cdot \operatorname{det}(B-\lambda I) \operatorname{det}\left(S^{-1}\right)=\operatorname{det}(B-\lambda I) \\
& 2 \cdot A v=\lambda \cup
\end{aligned}
$$

${ }_{\text {MATH 4242-Week 14-2 }} \quad S B S^{-1} v=\lambda v . \Rightarrow B\left(S^{-1} v\right)=\lambda\left(S^{-1} v\right) \begin{gathered}\text { eigenvector } \\ \text { of } B^{2020}\end{gathered}$

Example. Let's consider $A=S B S^{-1}=\left(\begin{array}{ll}3 & 2 \\ 0 & 2\end{array}\right)$, where $S=\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$ and $B=\left(\begin{array}{rr}1 & 2 \\ -1 & 4\end{array}\right)$.

It is clear that B_{B}^{A} is similar to \boldsymbol{A}^{B}. The matrix B has eigenvalues 3 and 2, with eigenvectors $\mathbf{w}_{1}=(1,1)^{T}$ and $\mathbf{w}_{2}=\underline{(2,1)^{T}}$ (check this!).

Then A also has eigenvalues 3 and 2, but has eigenvectors

$$
S \mathbf{w}_{1}=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{1}{1}=\binom{1}{0}, \quad S \mathbf{w}_{2}=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{2}{1}=\binom{2}{-1}
$$

Remark: In particular, if A is complete (implies A is diagonalizable), then A is similar to a diagonal matrix D :

$$
\underline{\underline{A}}=V \underline{\underline{D}} V^{-1} .
$$

8.7 Singular Values

While we've seen that eigenvectors and eigenvalues are powerful tools for understanding matrices and operators, they have limitations.

1. Only square matrices can have eigenvectors.
2. Not every matrix has a basis of eigenvectors (only complete/diagonalizable matrices do).
3. Even when an eigenbasis exists, unless the matrix is symmetric this basis will not be orthogonal.
4. Also, non-symmetric matrices may have complex eigenvalues/eigenvectors.

§ Singular value decomposition (SVD)

We study the factorization of a non-square matrix. The technique is widely used in data analysis.

The key observation is that for any real matrix $A=A_{m \times n}$ (not necessarily square), the matrices

$$
A A^{T}, \quad A^{T} A
$$

are both real, symmetric matrices (of sizes m-by- m and n-by- n, respectively).

Let's start by reviewing some facts.
Fact: Let $A \in M_{m \times n}$ ($m \times n$ real matrices). Then the following are true.

1. $A^{T} A$ and $A A^{T}$ are symmetric.
2. The kernel of $A^{T} A=$ the kernel of A.
3. $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$.

Consequently, the spectral theorem applies to these matrices $A A^{T}, A^{T} A$, even when A is NOT square. (Recall that $A^{T} A$ is called the Gram matrix of A, while $A A^{T}$ is the Gram matrix of A^{T}.)

The SVD will be based on a factorization of the $n \times n$ matrix $A^{T} A$ with rank r : Since $A^{\top} A$ is symmetric with $\operatorname{rank} A^{\top} A=r$, we can find eigenvalues $\underbrace{\lambda_{1}, \ldots, \lambda_{r}}_{\text {nonzero }},{ }_{r+1} 0, \ldots, 0$ with orthonormal eigenvectors $V_{1}, \ldots, V_{r}, V_{r+1}, \ldots, V_{n}$, that is,

$$
\left\{\begin{array}{l}
\left(A^{\top} A\right) v_{j}=\lambda_{j} v_{j}, \quad 1 \leq j \leq \gamma \\
\left(A^{\top} A\right) v_{k}=0, k=\gamma+1, \ldots, n
\end{array}\right.
$$

Thus, Fact in Lecture 32, wing $\left(A^{\top} A\right)$ has orthonormal β) basis $\left\{U_{1} \ldots, u_{r} \mid\right.$ and $\operatorname{Ker}\left(A^{\top} A\right)$ has $O N B\left\{V_{\gamma+1}, \ldots, v_{n}\right\}$ In addition. $A^{\top} A$ and A hasse the same Kernel and coing.

Now, recall $\left\{v_{1}, \ldots, v_{r} \mid\right.$ oN for coning A, then $\left\{A v_{1}, \ldots, A v_{r}\right\}$ is a basis fringe

$$
\begin{aligned}
\left\langle A v_{i}, A v_{j}\right\rangle & =\left\langle A^{\top} A v_{i}, v_{j}\right\rangle \\
& =\left\langle\lambda_{i} v_{i}, v_{j}\right\rangle \quad \text { Spring 2020 }
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda_{i}\left\langle v_{i}, v_{j}\right\rangle \\
& = \begin{cases}\lambda_{i} & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases}
\end{aligned}
$$

It implies $\left\|A v_{i}\right\|=\sqrt{\pi_{i}} \underset{\text { denote }}{ }=\sigma_{i}, 1 \leq i \leq \gamma$.
Let $u_{i}=\frac{A v_{i}}{\sigma_{i}}$. Then $\left\{u_{1}, \ldots, u_{r}\right\} O N B$ faring A.
Finally, finding $O N B\left\{u_{r+1}, \ldots, u_{m}\right\}$ for cher A.

$$
\begin{array}{l}
A[\underbrace{v_{1} \cdots}_{V} \underline{v_{r}} v_{r+1} \cdots v_{n}]
\end{array}=\underbrace{\left[u_{1} \cdots u_{r} u_{r+1} u_{m}\right.}_{V}]\left[\begin{array}{c}
\sigma_{\Sigma}^{\sigma_{1}} \cdots \sigma_{\Sigma^{\prime}} \\
\Rightarrow A=U \Sigma \sigma^{\top} \\
\Rightarrow A
\end{array}\right.
$$

where $U=m \times m$ orthogonal matrix.

Definition: The square roots of the eigenvalues of $A^{T} A$ are called the singular values $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}$ of an $m \times n$ matrix A.

Thus, we have shown that

Full SVD for a matrix:

Let A be an $m \times n$ matrix of rank r with the positive singular values

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}
$$

and let Σ be the $m \times n$ matrix defined by

$$
\Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & 0 & \cdots & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & 0 & \sigma_{r} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & \cdots & 0 & \cdots & 0
\end{array}\right]_{m \times n}
$$

Then there exist an $m \times m$ orthogonal matrix U and an $n \times n$ rthogonal matrix V such that

$$
A=U \Sigma V^{T} . \quad(\text { Full SUD) }
$$

Example. Find SVD for $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 1 & 1 & -1\end{array}\right]$. Solution:
To be continued.

