Lecture 34: Quick review from previous lecture

Let A be a real, symmetric matrix with eigenvalues A1, ..., A, with corresponding

orthonormal eigenvectors uy, ..., u,.

e Let ||x|lo = /27 + ...+ 22. The natural matrix norm of A is

1]l = max{[|Au][z - [[ulz = 1}.

Then || A|| = maxq<ij<pn |\

e The Frobenius norm of a matrix A is defined by

lAlr= > a

i=1 j=1

Then ||Allp = /AT + ... + A2
e Suppose that [A;| > -+ > |\,]. Then

[Ar] = max{[|Axlly : Ix[la =1}, |Aa] = min{[[Ax]lz = []x[[2 = 1}.

The maximal value of ||Ax|| is achieved when x = +u;.

The minimal value of ||Ax|| is achieved when x = +u,,.

Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

e Information for Final Exam and Course Grade has been posted on Canvas, see

” Announcements” .
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§ Optimization principles for eigenvalues of symmetric matrices
Suppose that a symmetric matrix A has real eigenvalues

AL 22 Ay

and has an orthonormal eigenvector basis uy, ..., u,. Its spectral factorization is

A=QDQ". = [u, -—-wh][]'"-. 7“’ ](MMW]".'
° h

Consider the associated quadratic form: L N .
Taking 4wy X i R™, A= Gt Cuua with MIXI=l= ¢7+. ..+ c)"
/ @ q(x) = (Ax, x). -

J

;<c| A'M|f""rcmnm“u, A )

ZTE

(M.',M‘-) =0 , 1% = ot A, te 4 ot An
:" /zzd@Cf 7.‘ +C22 7l,'|' ""?Chlﬂ’

= A (c3 + -+ )= 2

]
?(M'); <A'V\‘ ) M'> = 7', <M,’ u,? -_-ﬂ'

- 2

Thus, we have the result:@ g =) = By, x>2 ¢ N, + - + Cx A,
- -2, . 2

Fact: Suppose that a symmetric matrix A has reallle?ge;lvglugs =) =

ilu,.) = N,

AL Z s 2 A
Then
A1 = max{(Ax,x) : ||x][e =1}, Ap = min{ (Ax,x) : [|x||s = 1}.

The maximal value is achieved when x = #+uy, the unit eigenvector associated
with the largest eigenvalue A;.

The minimal value is achieved when x = 4-u,,, the unit eigenvector associated
with the smallest eigenvalue \,,.
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Example. Consider the matrix

31
A= :
// 4 [1 3] 7/ Z
Find max{(Ax,x) : [|x||2 = 1} and min{(Ax,x) : ||x|[o = 1}.
D= det (A-21T)= N'=€n+9, =4 2z

§ Similar matrices

Definition: Let A, B be two square matrices. We say that A is similar to
B if there exists an invertible (nonsingular) matrix S such that

A= SBS .

Fact: If A and B are similar, then they have the_same ¢igenvalues

Suppose that Av = Av and X is the eigenvalue. Then S~!v is an eigenvector
of B with eigenvalue .

Similarly, if w is an eigenvector of B with eigenvalue p, then Sw is an eigen-
vector of A with eigenvalue p.

l Charecteristiv pv'/nahm{ a-f /l
Fa (M) = det (A-NTI)
= det (_SBS"_ 7‘}_)

> dt (SBs™ -ass”

= det (S (B’I\I)S'f

= det S . et (B-2T) der(s~) ‘a‘{er((B—ﬂI)
L Y Av = Dv @

wim e SBSY sag. 2 Bls ) = ATy ) <IN




Example. Let’s consider A = SBS™! = ( ) g ) , where S = ( _1 ! )and

0 11
1 9
B_(—l 4)&4 B

It is clear that & is similar to ¥. The matrix B has eigenvalues 3 and 2, with
eigenvectors wi = (1, 1)7 and wo = (2. 1)1 (check this!).
Then A also has eigenvalues 3 and 2, but has eigenvectors

e () G) = () s () () - ()

Remark: In particular, if A is complete (implies A is diagonalizable), then A is
similar to a diagonal matrix D:

A= vgv—l.
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8.7 Singular Values

While we've seen that eigenvectors and eigenvalues are powerful tools for under-
standing matrices and operators, they have limitations.

1. Only square matrices can have eigenvectors.

2. Not every matrix has a basis of eigenvectors (only complete/diagonalizable
matrices do).

3. Even when an eigenbasis exists, unless the matrix is symmetric this basis will
not be orthogonal.

4. Also, non-symmetric matrices may have complex eigenvalues/eigenvectors.

§ Singular value decomposition (SVD)

We study the factorization of a non-square matrix. The technique is widely used
in data analysis.

The key observation is that for any real matrix A = A,,«, (not necessarily
square), the matrices —

AAT AT A

are both real, symmetric matrices (of sizes m-by-m and n-by-n, respectively).

Let’s start by reviewing some facts.

Fact: Let A € M,,»,, (m x n real matrices). Then the following are true.
1. AT A and AAT are symmetric.
2. The kernel of AT A = the kernel of A.
3. rank(A) = rank(AT A).

Consequently, the spectral theorem applies to these matrices AA’, AT A, even when
A is NOT square. (Recall that AT A is called the Gram matriz of A, while AAT
is the Gram matriz of AT))
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(44 =A4MJ“~ )
The SVD will be based on a factorization of the n x n matrix AT A with rank r:
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Definition: The square roots of the eigenvalues of A’ A are called the singular
values 01,09, -+, 0, of an m X n matrix A.

Thus, we have shown that

Full SVD for a matrix:
Let A be an m x n matrix of rank r with the positive singular values

012022 20y,

and let X be the m X n matrix defined by

o 0 - 0 -+ 0
0 g9 -+- 0 -+ 0
=10 0 0 ---0
0 0 0 o 0
O «vv vn- 0 --- 0

L d mXn

Then there exist an m X m@matrix U and an n Xn @ﬂaﬁix

‘L/_such that
A=UsVT. (Rill SUD )

I 1 -1

7o be cont Mo

Example. Find SVD for A = [ bl ] :

Solution:
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