Lecture 35: Quick review from previous lecture

- Suppose that a symmetric matrix A has real eigenvalues

$$
\lambda_{1} \geq \cdots \geq \lambda_{n}
$$

Then

$$
\lambda_{1}=\max \left\{\langle A \mathbf{x}, \mathbf{x}\rangle:\|\mathbf{x}\|_{2}=1\right\}, \quad \lambda_{n}=\min \left\{\langle A \mathbf{x}, \mathbf{x}\rangle:\|\mathbf{x}\|_{2}=1\right\} .
$$

The maximal value is achieved when $\mathbf{x}= \pm \mathbf{u}_{1}$, the unit eigenvector associated with the largest eigenvalue λ_{1}.
The minimal value is achieved when $\mathbf{x}= \pm \mathbf{u}_{n}$, the unit eigenvector associated with the smallest eigenvalue λ_{n}.

Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

- Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".

Definition: The square roots of the eigenvalues of $A^{T} A$ are called the singular values $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}$ of an $m \times n$ matrix A.

Thus, we have shown that

Full SVD for a matrix:

Let A be an $m \times n$ matrix of rank r with the ositives singular values

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}
$$

and let Σ be the $m \times n$ matrix defined by

$$
\Sigma=\left[\begin{array}{cccccc}
\frac{\sigma_{1}}{0} & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & 0 & \frac{\sigma_{r}}{} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & \cdots & 0 & \cdots & 0
\end{array}\right]_{m \times n}
$$

Then there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

If $m \geq n$.

A

\sqcup

Σ

(Full SVD)
(Reduced SVD)
same as the one in P. 455 textbook

Example. Find full and reduced SVD for $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 1 & 1 & -1\end{array}\right]$.
Solution: $A^{\top} A=\left(\begin{array}{cc}1 & 1 \\ 1 & 1 \\ -1 & -1\end{array}\right)\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & -1\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 2\end{array}\right)$ has eigenvalues

$$
\begin{aligned}
& \lambda=6,0,0 . \\
& \begin{array}{l}
\lambda=6 \\
\\
u_{1}=\frac{1}{\sqrt{6}} \\
v_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) ; \frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right) \frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=\frac{1}{\sqrt{2}}\binom{1}{1} .
\end{array} . \quad . \quad v_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
1 \\
2
\end{array}\right) .
\end{aligned}
$$

Finding $u_{2} \perp u_{1},\left(u_{2} \in \operatorname{coker} A\right)$, we have

$$
u_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}_{3} .
$$

(Full SUD)

Reduced SVD:

$$
A=\begin{gathered}
{\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]} \\
\hat{\Delta}
\end{gathered} \begin{array}{cc}
{[\sqrt{6}]} \\
\hat{L} & {\left[\begin{array}{lll}
\sqrt{3} & 1 / \sqrt{3} & -1 / \sqrt{3}
\end{array}\right]} \\
\hat{V}^{\top}
\end{array}
$$

Fact: Let $A \in M_{m \times n}$ ($m \times n$ real matrices). Then the following are true.

1. The nonzer eigenvalues of $A^{T} A$ and $A A^{T}$ are the same.
2. A and A^{T} have the same nonzero singular values.
3. SVD of $A(\operatorname{rank} A=\gamma): A=U \Sigma V^{\top}$.

$$
\begin{aligned}
& A^{\top} A=V \Sigma^{\top} \frac{U^{\top} U \Sigma V^{\top}=V\left(\Sigma^{\top} \Sigma\right) V^{\top}}{I^{I}} \\
& A A^{\top}=U \Sigma \frac{V^{\top} V \Sigma^{\top} U^{\top}=U\left(\Sigma \Sigma^{\top}\right) U^{\top}}{I} .
\end{aligned}
$$

$\Sigma^{\top} \sum$ and $\sum \Sigma^{T}$ have the same ${ }_{\wedge}$ eigenvalues $\sigma_{1}{ }^{2}, \ldots, \sigma_{r}{ }^{2}$.
since $A^{\top} A$ is similar to $\Sigma^{\top} 2, A^{\top} A$ has eigenvalues, $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$. Similarly. $A A^{\top}$ also have nonzero eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{\gamma}{ }^{2}$ sine $A A^{\top}$ is simile. to $\bar{L} \Sigma^{\top}$.

Fact: Let $A \in M_{m \times n}$ ($m \times n$ real matrices). Then the following is true.

1. If $A=A^{T}$, then the singular values of A are the absolute values of the eigenvalues of A.

$$
\begin{aligned}
& A v=\lambda v, v \neq 0 . \\
& \left(A^{\top} A\right) v=A^{\top}(\lambda v) \stackrel{A=A^{\top}}{=} \lambda A v=\left(\lambda^{2}\right) v .
\end{aligned}
$$

So, x^{2} is eigenvalue of $A^{\top} A$, it leads to $\sqrt{\lambda^{2}}=|\lambda|$ is the singulase value of A.

Likewise, we also have
Fact: Let $A \in M_{m \times n}$ ($m \times n$ real matrices). Then the following are true.

1. $\|A\|_{2}=\sigma_{1}$
2. $\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}}$.

The proof is similar to the one for symmetric matrix we showed in Lecture 33. Thus, we skip the proof here.

§ Least square solutions - Pseudo inverse

How do we "almost" solve a system?
For instance, we consider an experimenter collects data by taking measurements

$$
b_{1}, b_{2}, \ldots, b_{\boldsymbol{m}} \quad \text { at times } t_{1}, t_{2}, \ldots, t_{\boldsymbol{m}} \text { respectively. }
$$

Suppose that the data

$$
\left(b_{1}, t_{1}\right),\left(b_{2}, t_{2}\right), \ldots,\left(b_{\boldsymbol{m}}, t_{\boldsymbol{m}}\right)
$$

are plotted in the plane.
Suppose there exists a "linear relationship" between b and t, say $b=\alpha t+\beta$. We want to find the constants α, β so that the line $b=\alpha t+\beta$ represents the best possible fit to the data collected. One way is to minimize the error

$$
E \stackrel{\text { def }}{=} \sum_{i=1}^{m}(\underbrace{b_{i}}_{\text {collected data }}-\underbrace{\left(\alpha t_{i}+\beta\right)}_{\text {linear relationship }})^{2},
$$

which can be written as

Since we cannot solve $A x=b$ exactly in many cases, our goal here is to find a x that minimizes $\|A x-b\|$. We will develop a general method for finding a vector x^{*} that minimizes the error E, that is,

$$
\left\|A x^{*}-b\right\| \leq\|A x-b\| \quad \text { for all } x \in \mathbb{R}^{n}
$$

Definition: Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. The least squares problem is to find $\mathbf{x} \in \mathbb{R}^{n}$ for which that $\|A \mathbf{x}-\mathbf{b}\|$ is minimized.

A vector \mathbf{x} that minimizes $\|A \mathbf{x}-\mathbf{b}\|$ is called the least squares solution.

Definition: The pseudoinverse of a nonzero $m \times n$ matrix A with SVD $A=U \Sigma V^{T}$ is the $n \times m$ matrix
$(m \geq n)$

$$
A^{+}=V \Sigma^{+} U^{T}
$$

A has rank r with singular salves $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$.

Fact: Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. Let $\mathbf{x}^{*}=A^{+} \mathbf{b}$. Then \mathbf{x}^{*} is the least squares solution to the linear system $A \mathbf{x}=\mathbf{b}$.

$$
b=b_{n}+b_{n} \quad \cdot b_{r} \text { :orthogonal projection of } b \text { onto ing } A \text {, }
$$

$$
\begin{aligned}
& \text { - } b_{r} \text { : orthogonal projection of } b \text { onto ing } A \text {, } \\
& \text { br y } b_{n} \text {, coper } A \text {. } \\
& \text { over } A
\end{aligned}
$$

$$
\|A x-b\|_{2}^{2}=\left\|A x-b_{r}-b_{n}\right\|_{2}^{2}=\left\|A x-b_{r}\right\|^{2}+\left\|b_{n}\right\|_{2}^{2}
$$

$$
\min _{x}\|A x-b\|_{2}^{2}=\left\|b_{n}\right\|_{2}^{2}
$$

$$
\left(A x-b_{r}\right) \perp b_{n} .
$$

The least squares solution satisfies

$$
A x=b_{r}
$$

check: $x^{*}=A^{+} b$ satisfies $A x=b r$.

$$
\begin{aligned}
& \Sigma=\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \sigma_{r_{0}} & \\
& & 0 & \cdots
\end{array}\right]_{m \times n} \\
& L^{\dagger t}=\left[\begin{array}{llllll}
1 / \sigma_{1} & & & & & \\
& & y_{\sigma_{r}} & & & 0
\end{array}\right]_{n \times m} ; \quad \Sigma_{i i j}^{+}=\left\{\begin{array}{lll}
\frac{1}{\sigma_{i}}, & \text { if } i=j \leq r, \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

[Continue] $A^{\top} A x=A^{\top} b_{r}=A^{\top}\left(b-b_{n}\right)$

$$
=A^{\top} b \cdot\left(A^{\top} b_{n}=0\right.
$$

Remark: The equation $A^{T} A \mathbf{x}-A^{T} \mathbf{b}=0$ is called the normal equation.
Fact: Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. Let $\mathbf{x}^{*}=A^{+} \mathbf{b}$. If A has n linearly independent columns $(\operatorname{ker} A=\{\mathbf{0}\})$, then
$\operatorname{rank} A=n$

$$
\mathbf{x}^{*}=A^{+} \mathbf{b}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b},
$$

where

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

Thus. $\left(A^{\top} A\right)^{-1}$ exists. x^{*} sataties $A^{\top} A x=A^{\top} b$.

$$
\text { so, } x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b \text {. }
$$

Example. Consider the linear system

$$
\left\{\begin{array}{l}
x+y-z=1, \\
x+y-z=1 .
\end{array}\right.
$$

Find the best approximation to a solution having minimum norm.

To be continued!

