Lecture 35: Quick review from previous lecture

• Suppose that a symmetric matrix A has real eigenvalues

$$\lambda_1 \geq \cdots \geq \lambda_n.$$

Then

$$\lambda_1 = \max\{\langle A\mathbf{x}, \mathbf{x} \rangle : \|\mathbf{x}\|_2 = 1\}, \qquad \lambda_n = \min\{\langle A\mathbf{x}, \mathbf{x} \rangle : \|\mathbf{x}\|_2 = 1\}.$$

The **maximal value** is achieved when $\mathbf{x} = \pm \mathbf{u}_1$, the unit eigenvector associated with the largest eigenvalue λ_1 .

The **minimal value** is achieved when $\mathbf{x} = \pm \mathbf{u}_n$, the unit eigenvector associated with the smallest eigenvalue λ_n .

Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

• Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".

Definition: The square roots of the eigenvalues of $A^T A$ are called the **singular** values $\sigma_1, \sigma_2, \dots, \sigma_n$ of an $m \times n$ matrix A.

Thus, we have shown that

Full SVD for a matrix:

Let A be an $\underline{m \times n}$ matrix of rank r with the positive singular values

 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r,$

and let Σ be the $m \times n$ matrix defined by

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & 0 & \sigma_r & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$

Then there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U\Sigma V^{T}.$$

$$(A^{T}A)v_{j} = h_{j}v_{j}, i \in j \leq r$$

$$(A^{T}A)v_{j} = 0, r+i \in j \leq n$$

$$(A^{T}A)v_{j} = 0, r+i \in j \in n$$

$$(A^{T}A)v_{j} = 0, r+i \in n$$

$$(A^{T}A)v_{j$$

MATH 4242-Week 14-3

Spring 2020

$$\begin{bmatrix} \text{Example continue} \\ \text{Then} \quad A = \\ \underbrace{\mathsf{X}^{2}}_{\mathbf{X}^{2}} \sqcup \Sigma \lor^{\mathsf{T}} = \begin{bmatrix} k_{1} \\ k_{2} \\ k_{3} \\ k_{4} \end{bmatrix} \begin{bmatrix} \mathbf{J} \\ \mathbf{J}$$

2. A and A mave the same nonzero singular values.
1.
$$SVD$$
 of $A(rank A=r) : A=U EV^{T}$.
 $A^{T}A = V E^{T} U^{T} U EV^{T} = V(E^{T}E)V^{T}$.
 $AA^{T} = UEV^{T} V E^{T}U^{T} = U(EE^{T})U^{T}$.
 $E^{T}E$ and EE^{T} have the same reigen values
 $\nabla_{1}^{2}, \dots, \nabla_{r}^{2}$.
 $Smca A^{T}A$ is similar to $E^{T}E$, $A^{T}A$ has eigenvalue
 $\nabla_{1}^{2}, \dots, \nabla_{r}^{2}$.
 $Smca A^{T}A$ is similar to $E^{T}E$, $A^{T}A$ has eigenvalue
 $eigenvalues$ $\nabla_{1}^{2}, \dots, \nabla_{r}^{2}$.
 $Similar A^{T} = Similar A^{T} = Similar$.
 $AA^{T} = EE^{T}$.

Fact: Let $A \in M_{m \times n}$ ($m \times n$ real matrices). Then the following is true.

1. If $A = A^T$, then the singular values of A are the absolute values of the eigenvalues of A.

A
$$v = \lambda v$$
, $v \neq 0$.
 $(A^{T}A)v = A^{T}(\lambda v) \stackrel{A=A^{T}}{=} \lambda A v = (\lambda^{2})v$.
So, λ^{2} is ergenvalue of $A^{T}A$, it leads to
 $\sqrt{\lambda^{2}} = |\lambda|$ is the singulare value of A .

Likewise, we also have

Fact: Let $A \in M_{m \times n}$ ($m \times n$ real matrices). Then the following are true.

- 1. $||A||_2 = \sigma_1$
- 2. $||A||_F = \sqrt{\sigma_1^2 + \ldots + \sigma_r^2}$.

The proof is similar to the one for symmetric matrix we showed in Lecture 33. Thus, we skip the proof here.

MATH 4242-Week 14-3

§ Least square solutions - Pseudo inverse

How do we "almost" solve a system?

For instance, we consider an experimenter collects data by taking measurements

$$b_1, b_2, \ldots, b_m$$
 at times t_1, t_2, \ldots, t_m respectively.

Suppose that the data

 $(b_1, t_1), (b_2, t_2), \ldots, (b_n, t_n)$

are plotted in the plane.

Suppose there exists a "linear relationship" between b and t, say $b = \alpha t + \beta$. We want to find the constants α, β so that the line $b = \alpha t + \beta$ represents the best possible fit to the data collected. One way is to minimize the error h/ /

$$E \stackrel{def}{=} \sum_{i=1}^{m} \left(\underbrace{b_{i}}_{collected \ data} - \underbrace{(\alpha t_{i} + \beta)}_{linear \ relationship} \right)^{2},$$
which can be written as
$$\|Ax - b\|^{2},$$
where
$$A = \begin{bmatrix} t_{1} & 1 \\ t_{2} & 1 \\ \vdots & \vdots \\ t_{m} & 1 \end{bmatrix}, \quad b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}, \quad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$
(1)

where

Since we cannot solve Ax = b exactly in many cases, our goal here is to find a x that minimizes ||Ax - b||. We will develop a general method for finding a vector x^* that **minimizes the error** E, that is,

$$||Ax^* - b|| \le ||Ax - b|| \quad \text{for all } x \in \mathbb{R}^n.$$

Definition: Suppose that $A \in M_{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. The least squares prob**lem** is to find $\mathbf{x} \in \mathbb{R}^n$ for which that $||A\mathbf{x} - \mathbf{b}||$ is minimized. A vector **x** that minimizes $||A\mathbf{x} - \mathbf{b}||$ is called **the least squares solution**.

Fact: Suppose that $A \in M_{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Let $\mathbf{x}^* = A^+ \mathbf{b}$. Then \mathbf{x}^* is the least squares solution to the linear system $A\mathbf{x} = \mathbf{b}$.

[Continue]
$$A^T A x = A^T b_r = A^T (b - b_n)$$

= $A^T b (A^T b_n = o)$
since $b_n \in coher A$

Remark: The equation $A^T A \mathbf{x} - A^T \mathbf{b} = 0$ is called the **normal equation**.

Fact: Suppose that
$$A \in M_{m \times n}$$
, $\mathbf{b} \in \mathbb{R}^{m}$. Let $\mathbf{x}^{*} = A^{+}\mathbf{b}$. If A has n linearly
independent columns(ker $A = \{\mathbf{0}\}$), then
 $\mathbf{x}^{*} = A^{+}\mathbf{b} = (A^{T}A)^{-1}A^{T}\mathbf{b}$,
where
 $A^{+} = (A^{T}A)^{-1}A^{T}$.
Thus. $(A^{T}A)^{-1} e^{\mathbf{x}\cdot\mathbf{x}}\mathbf{t}s$. \mathbf{x}^{*} can strike $A^{T}A\mathbf{x} = A^{T}b$.
 $\leq o_{p}$, $\mathbf{x}^{*} = (A^{T}A)^{-1}A^{T}b$.

Example. Consider the linear system

$$\begin{cases} x+y-z=1, \\ x+y-z=1. \end{cases}$$

Find the best approximation to a solution having minimum norm.

To be continued!