
Lecture 35: Quick review from previous lecture

• Suppose that a symmetric matrix A has real eigenvalues

�1 � · · · � �n.

Then

�1 = max{hAx,xi : kxk2 = 1}, �n = min{hAx,xi : kxk2 = 1}.

The maximal value is achieved when x = ±u1, the unit eigenvector associ-
ated with the largest eigenvalue �1.

The minimal value is achieved when x = ±un, the unit eigenvector associ-
ated with the smallest eigenvalue �n.

—————————————————————————————————
Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

—————————————————————————————————

• Information for Final Exam and Course Grade has been posted on Canvas, see
”Announcements”.
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Definition: The square roots of the eigenvalues ofATA are called the singular
values �1, �2, · · · , �n of an m⇥ n matrix A.

Thus, we have shown that

Full SVD for a matrix:
Let A be an m⇥ n matrix of rank r with the positive singular values

�1 � �2 � · · · � �r,

and let ⌃ be the m⇥ n matrix defined by

⌃ =

2

6666666664

�1 0 · · · 0 · · · 0
0 �2 · · · 0 · · · 0
... ... ... ... ...
0 0 · · · 0 · · · 0
0 0 0 �r · · · 0
... ... ... ... ...
0 · · · · · · 0 · · · 0

3

7777777775

m⇥n

Then there exist anm⇥m orthogonal matrix U and an n⇥n orthogonal matrix
V such that

A = U⌃V T .
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[SVD]

Example. Find full and reduced SVD for A =


1 1 �1
1 1 �1

�
.

Solution:

MATH 4242-Week 14-3 3 Spring 2020

A C - - um - -- un) -- K ' Ui -Ift""
- - -4 "

i.

go .
.

. .)
E

- #

t
"

⇐ " sun

"e:÷÷÷÷¥
.

ATA = (I, 1) ( t ,
' Ii ) =/

.

} ! ) has eigenvalues
D= 6
,
O
, 0 .

He . v
,
= it! ) ; l . Vert f!) . Vertol!)

.

u .
= Afi = rt Ci : I) rill ) = rill) .

Finding Uz L U .
.
( uz E coker A ) , we have

a. = rt (ti ) .



[Example continue]

Fact: Let A 2 Mm⇥n (m⇥ n real matrices). Then the following are true.

1. The nonzero eigenvalues of ATA and AAT are the same.

2. A and AT have the same nonzero singular values.
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Fact: Let A 2 Mm⇥n (m⇥ n real matrices). Then the following is true.

1. If A = AT , then the singular values of A are the absolute values of the
eigenvalues of A.

Likewise, we also have

Fact: Let A 2 Mm⇥n (m⇥ n real matrices). Then the following are true.

1. kAk2 = �1

2. kAkF =
p

�2
1 + . . . + �2

r .

The proof is similar to the one for symmetric matrix we showed in Lecture 33.
Thus, we skip the proof here.
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§ Least square solutions - Pseudo inverse
How do we “almost” solve a system?

For instance, we consider an experimenter collects data by taking measurements

b1, b2, . . . , bn at times t1, t2, . . . , tn, respectively.

Suppose that the data
(b1, t1), (b2, t2), . . . , (bn, tn)

are plotted in the plane.
Suppose there exists a “linear relationship” between b and t, say b = ↵t + �.

We want to find the constants ↵, � so that the line b = ↵t+ � represents the best
possible fit to the data collected. One way is to minimize the error

E
def
=

mX

i=1

( bi|{z}
collected data

� (↵ti + �)| {z }
linear relationship

)2,

which can be written as

kAx� bk2, (1)

where

A =

2

6664

t1 1
t2 1
... ...
tn 1

3

7775
, b =

2

6664

b1
b2
...
bn

3

7775
, x =


↵
�

�
.

Since we cannot solve Ax = b exactly in many cases, our goal here is to find a
x that minimizes kAx� bk. We will develop a general method for finding a vector
x⇤ that minimizes the error E, that is,

kAx⇤ � bk  kAx� bk for all x 2 Rn.

Definition: Suppose that A 2 Mm⇥n, b 2 Rm. The least squares prob-
lem is to find x 2 Rn for which that kAx� bk is minimized.

A vector x that minimizes kAx�bk is called the least squares solution.
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Definition: The pseudoinverse of a nonzero m ⇥ n matrix A with SVD
A = U⌃V T is the n⇥m matrix

A+ = V ⌃+UT .

Fact: Suppose that A 2 Mm⇥n, b 2 Rm. Let x⇤ = A+b. Then x⇤ is the least
squares solution to the linear system Ax = b.
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[Continue]

Remark: The equation ATAx� ATb = 0 is called the normal equation.

Fact: Suppose that A 2 Mm⇥n, b 2 Rm. Let x⇤ = A+b. If A has n linearly
independent columns(kerA = {0}), then

x⇤ = A+b = (ATA)�1ATb,

where
A+ = (ATA)�1AT.

Example. Consider the linear system
⇢

x + y � z = 1,
x + y � z = 1.

Find the best approximation to a solution having minimum norm.
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