Lecture 36: Quick review from previous lecture

• Full SVD for a matrix:

Let A be an $m \times n$ matrix of rank r with the positive singular values

 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r,$

and let Σ be the $m \times n$ matrix defined by

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & 0 & \sigma_r & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$

Then there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

 $A = U\Sigma V^T$. (Full SVD)

Ax=6

• Suppose that $A \in M_{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. The least squares problem is to find

 $\mathbf{x} \in \mathbb{R}^n$ for which that $||A\mathbf{x} - \mathbf{b}||$ is minimized.

A vector **x** that minimizes $||A\mathbf{x} - \mathbf{b}||$ is called **the least squares solution**.

Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

• Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".

Remark: The least squares solution \mathbf{x}^* to the system $A\mathbf{x} = \mathbf{b}$ satisfies the **nor-** \mathbf{n} **mal equation** $A^T A \mathbf{x} - A^T \mathbf{b} = 0$.

Fact: Suppose that $A \in M_{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Let $\mathbf{x}^* = A^+ \mathbf{b}$. Then \mathbf{x}^* is the least squares solution to the linear system $A\mathbf{x} = \mathbf{b}$. If A has n linearly independent columns(ker $A = \{\mathbf{0}\}$), then

$$\mathbf{x}^* = A^+ \mathbf{b} = (A^T A)^{-1} A^T \mathbf{b},$$

where

$$A^+ = (A^T A)^{-1} A^T.$$

Example. Consider the linear system

$$\begin{cases} x+y-z=1, \\ x+y-z=1. \end{cases}$$

Find the best approximation to a solution having minimum norm.

We write $A \vec{x} = b$, where $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ In lecture 35, we have found SVD of Ais $A = \begin{pmatrix} \vec{x} & \vec{x} \\ \vec{x} & \vec{x} \end{pmatrix} \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \vec{x} & \vec{x} & \vec{x} \\ \vec{x} & \vec{x} & \vec{x} \\ \vec{x} & \vec{x} & \vec{x} \end{pmatrix}^{T}$ $= U \qquad \Sigma \qquad V^{T}$ So, pseudo mense of A is $A^{+} = V \begin{bmatrix} \vec{x} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} U^{T} = \frac{1}{6} \begin{pmatrix} 1 \\ 1 \\ -1 & -1 \end{pmatrix}$ MATH 1242-Week 15-1 Σ^{+} $So_{3} \times^{*} = A^{+}b = A^{+}(1) = \frac{1}{3}bbertohe R$

§ Low rank approximations to a matrix.

Suppose we want to approximate a matrix $A = A_{m \times n}$ with rank r by a matrix $B = B_{m \times n}$ with rank k < r. That is, we want such B to minimize ||A - B||. Recall a matrix A with rank r has full SVD as follows:

$$A = \bigcup \Sigma V^{\mathsf{T}} = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 & \cdots & \sigma_n \\ \vdots & \sigma_n & \sigma_n & \cdots & \sigma_n \end{bmatrix}, \quad \sigma_1 \geq \cdots \geq \sigma_r > 0.$$

$$F \quad we \; \text{take} \quad A_k = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \Sigma_{kr} & \cdots & \sigma_{kr} \\ \vdots & \sigma_{kr} & \sigma_{kr} & \cdots & \sigma_{r} = \sigma_r = \sigma_$$

Fact: This matrix B minimizes the distance to A as measured by Frobenius norm and operator norm:

$$|A-B||_F, \quad ||A-B||_2.$$

 $\|A - B\|_{F}, \quad \|A - B\|_{2}.$ $\|A \|_{F} = \int \overline{\sigma_{1}^{2} + \dots + \sigma_{Y}^{2}} \quad j \quad \|A\|_{2} = \overline{\sigma_{1}} \left(\text{largest singular} \right)$ $\text{value of } A \right).$ Recall:

$$A-B = \coprod \Sigma \underbrace{\nabla} \nabla - \underbrace{\nabla} \Sigma_{k} \underbrace{\nabla}^{T} = \coprod (\underbrace{\Sigma - \Sigma_{k}}) \underbrace{\nabla}^{T}$$
$$= \underbrace{\bigcup}_{k=1}^{k} \underbrace{(\underbrace{\Sigma - \Sigma_{k}})}_{k=1} \underbrace{\nabla}_{k=1}^{T} \underbrace{\nabla}_{k=1}^{T}$$

Example. Find the best rank 1 approximation to $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$. Find SVD of A, $A^{T}A = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$. $O = det (A^{T}A - \lambda I)$ $\lambda = 1.3$ $\underline{\lambda=3}: A^{T}A - 3I \cdot V_{1} = \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \end{pmatrix}$ $T = \int v_1 v_2$ $\frac{\lambda=1}{2}: A^{\mathsf{T}}A - I \cdot U_{2} = \begin{pmatrix} \frac{d}{d} \\ \frac{d}{d} \end{pmatrix}.$ $u_1 = \frac{Av_1}{\sqrt{2}} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad ; \qquad u_2 = \frac{Av_2}{\sqrt{1}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ Finding U_3 that is orthogonal to $U_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ U1, U2, 50 Thus, full SUD of A is $A = U \Sigma V^{T} = \begin{bmatrix} u_{1} & u_{2} & u_{3} \end{bmatrix} \begin{bmatrix} v_{1} & v_{3} \end{bmatrix} \begin{bmatrix} v_{1} & v_{3} \end{bmatrix}^{T}.$ Reduced SVD of Ais $A = \hat{U}\hat{\Sigma}\hat{V}^{T} = \begin{bmatrix} u_{1} & u_{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} & v_{1} \end{bmatrix}^{T}$ $B = U \begin{bmatrix} \mathbf{J} & \mathbf{o} \\ \mathbf{o} & \mathbf{o} \end{bmatrix} \mathbf{v}^{\mathsf{T}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \mathbf{i} & \mathbf{i} \\ \mathbf{i} & \mathbf{i} \end{pmatrix} .$ 50, Exercise: II A - BIL =