Lecture 36: Quick review from previous lecture

- Full SVD for a matrix:

Let A be an $m \times n$ matrix of rank r with the positive singular values

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}
$$

and let Σ be the $m \times n$ matrix defined by

$$
\Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & 0 & \cdots & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & 0 & \sigma_{r} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & \cdots & 0 & \cdots & 0
\end{array}\right]_{m \times n}
$$

Then there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that
$A x=b$

$$
\left.A=U \Sigma V^{T} . \quad \text { (Full } \quad \text { sUD }\right)
$$

- Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. The least squares problem is to find $\mathrm{x} \in \mathbb{R}^{n}$ for which that $\|A \mathrm{x}-\mathbf{b}\|$ is minimized.
A vector \mathbf{x} that minimizes $\|A \mathbf{x}-\mathbf{b}\|$ is called the least squares solution.

Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

- Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".

Let's recap. Even if $A \mathbf{x}=$ b has no exact solution, we can always find a least squares solution $\mathbf{x}^{*}=A^{+} \mathbf{b}$ that minimizes the error $\|A \mathbf{x}-\mathbf{b}\|^{2}$.
Recall that the pseudoinverse of a nonzero $m \times n$ matrix A with SVD $A=$ $\underline{U \Sigma V^{T}}$ is the $n \times m$ matrix $A^{+}=V \Sigma^{+} U^{T}$.
\mathbb{R}^{n}

\mathbb{R}^{m}

cocker A
b_{r} : orthogonal pujectim of b onto ing A, bn ". "ocker.
Recalling: the least squares solution must satisfies the equation $A x=b_{r}$
Check: $x^{*}=A^{+} b$ satisfies $A x=b_{2}$.
$\left[\begin{array}{lll}\text { To see this }\end{array}\right] x^{\top}=\underline{A^{+} b}=V \Sigma^{+} U^{\top} b=V\left[\begin{array}{lll}\frac{1}{\sigma_{1}} & & \\ & \ddots & \\ & \frac{1}{\sigma_{v}} & \\ & 0_{\cdots}\end{array}\right]\left[\begin{array}{l}u_{0}^{\top} \\ u_{\nu} \\ u_{\nu} \\ \dot{u}_{n} \top\end{array}\right] b$

$$
=\left\langle b, u_{1}\right\rangle u_{1}+\cdots+\left\langle b, u_{r}\right\rangle u_{r}
$$

Remark: The least squares solution \mathbf{x}^{*} to the system $A \mathbf{x}=\mathbf{b}$ satisfies the nor- $\|$ mab equation $A^{T} A \mathbf{x}-A^{T} \mathbf{b}=0$.
Fact: Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. Let $\mathbf{x}^{*}=A^{+} \mathbf{b}$. Then \mathbf{x}^{*} is the least squares solution to the linear system $A \mathbf{x}=\mathbf{b}$.

If A has n linearly independent columns $(\operatorname{ker} A=\{\mathbf{0}\}) \rightarrow A^{\top} A$ is invertible

$$
\mathbf{x}^{*}=A^{+} \mathbf{b}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

where

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T} .
$$

Example. Consider the linear system

$$
\left\{\begin{array}{l}
x+y-z=1 \\
x+y-z=1
\end{array}\right.
$$

Find the best approximation to a solution having minimum norm.
We white $A \vec{x}=b$, where $A=\left(\begin{array}{lll}1 & 1 & -1 \\ 1 & 1 & -1\end{array}\right), b=\binom{1}{1}$.
In lecture 35, we have found SVD of A

$$
\begin{aligned}
& \text { is } \\
& A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{6} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{-1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right)^{\top} \\
&=U
\end{aligned} \quad \sum \quad U^{\top} \begin{array}{ll}
\end{array}
$$

So, pseudo inverse of A is

$$
\begin{aligned}
& A^{+}=V\left[\begin{array}{cc}
\frac{1}{\sqrt{6}} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \quad U^{\top}=\frac{1}{6}\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
-1 & -1
\end{array}\right) . \\
& \Sigma^{+},
\end{aligned} \quad \text { So } B_{3} x^{*}=A^{+} b=A^{+}\binom{1}{1}=\frac{1}{3_{p}}\binom{1}{10}
$$

§ Low rank approximations to a matrix.
Suppose we want to approximate a matrix $A=A_{m \times n}$ with rank r by a matrix $B=B_{m \times n}$ with rank $k<r$. That is, we want such B to minimize $\|A-B\|$.

Recall a matrix A with rank r has full SVD as follows:

$$
A=山 \sum V^{\top}=\left[u_{1} \cdots u_{m}\right]\left[\begin{array}{cc}
\sigma_{1} & \\
& \sigma_{r} \\
\hdashline & u_{\ddots_{0}}
\end{array}\right]_{m \times n}\left[\begin{array}{c}
v_{1}^{\top} \\
\vdots \\
v_{n}^{\top}
\end{array}\right], \sigma_{1} \geq \ldots \geq \sigma_{r}>0 .
$$

 then the matrix A_{k} has rank k
The best rank k approximation to A is

$$
\begin{aligned}
B & =U \Sigma_{k} V^{T} . \\
& =U\left[\begin{array}{lllll}
\sigma_{1} & \ddots & & & \\
& & \sigma_{k} & & \\
& & & 0 & \cdot \\
& & & \cdot & \\
& &
\end{array} V^{\top}, \quad k<n .\right.
\end{aligned}
$$

Fact: This matrix B minimizes the distance to A as measured by Frobenius norm and operator norm:

$$
\|A-B\|_{F}, \quad\|A-B\|_{2}
$$

Recall: $\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}} ;\|A\|_{2}=\sigma_{1}$ (largest singular value of A).

$$
\begin{aligned}
& A-B=\underline{\Sigma} \underline{\underline{V}}^{\top}-\underline{U} \Sigma_{k} \underline{V}^{\top}=U\left(\underline{\Sigma}-\Sigma_{k}\right) V^{\top}
\end{aligned}
$$

So, the largest singular value of $A-13$ is σ_{k+1}, thus $\|A-B\|_{2}=\sigma_{k+1}$. Moreover.

$$
\text { MATH } 424 \| A A_{15} B| |_{F}=\sqrt{\sigma_{k+1}^{2}+\ldots+{ }^{4} \sigma_{\gamma}{ }^{2}}
$$

Example. Find the best rank 1 approximation to $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right)$.
Find SUD of $A . A^{\top} A=\left(\begin{array}{lll}2 & 1 \\ 1 & 2\end{array}\right)^{\prime} \cdot 0=\operatorname{det}\left(A^{\top} A-\lambda I\right)$ $\lambda=1,3$.
$\lambda=3: \quad A^{\top} A-3 I . \quad v_{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$
$n=1: \quad A^{\top} A-I . \quad v_{2}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}$.

$$
u_{1}=\frac{A v_{1}}{\sqrt{3}}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \quad ; \quad u_{2}=\frac{A v_{2}}{\sqrt{1}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Finding u_{3} that is orthogonal to u_{1}, u_{2}, so

$$
u_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right)
$$

Thus, full SUD of A is

$$
A=U \sum V^{\top}=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]^{\top} \text {. }
$$

Reduced SUD of A is

$$
\left.A_{3 \times 2}=\hat{U} \hat{2} \hat{U}^{\top}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]_{3 \times 2}\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right]_{2 \times 2}\left[v_{1} v_{2}\right]_{2 \times 2}^{\top} .\right]
$$

So, $B=U\left[\begin{array}{cc}\sqrt{3} & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] V^{\top}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ 1 & 1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) \cdot *$
Exercise:

$$
\|A-B\|_{F}=
$$

