
Lecture 36: Quick review from previous lecture

• Full SVD for a matrix:
Let A be an m⇥ n matrix of rank r with the positive singular values

�1 � �2 � · · · � �r,

and let ⌃ be the m⇥ n matrix defined by

⌃ =

2

6666666664

�1 0 · · · 0 · · · 0
0 �2 · · · 0 · · · 0
... ... ... ... ...
0 0 · · · 0 · · · 0
0 0 0 �r · · · 0
... ... ... ... ...
0 · · · · · · 0 · · · 0

3

7777777775

m⇥n

Then there exist an m ⇥ m orthogonal matrix U and an n ⇥ n orthogonal
matrix V such that

A = U⌃V T .

• Suppose that A 2 Mm⇥n, b 2 Rm. The least squares problem is to find
x 2 Rn for which that kAx� bk is minimized.

A vector x that minimizes kAx�bk is called the least squares solution.

—————————————————————————————————
Today we will discuss Singular Value Decomposition.

- Lecture will be recorded -

—————————————————————————————————

• Information for Final Exam and Course Grade has been posted on Canvas, see
”Announcements”.

MATH 4242-Week 15-1 1 Spring 2020

Ax --b (Full SVD )
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Let’s recap. Even if Ax = b has no exact solution, we can always find a least
squares solution x⇤ = A+b that minimizes the error kAx� bk2.
Recall that the pseudoinverse of a nonzero m ⇥ n matrix A with SVD A =
U⌃V T is the n⇥m matrix A+ = V ⌃+UT .
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Remark: The least squares solution x⇤ to the system Ax = b satisfies the nor-
mal equation ATAx� ATb = 0.

Fact: Suppose that A 2 Mm⇥n, b 2 Rm. Let x⇤ = A+b. Then x⇤ is the least
squares solution to the linear system Ax = b.

If A has n linearly independent columns(kerA = {0}), then

x⇤ = A+b = (ATA)�1ATb,

where
A+ = (ATA)�1AT.

Example. Consider the linear system
⇢

x + y � z = 1,
x + y � z = 1.

Find the best approximation to a solution having minimum norm.
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§ Low rank approximations to a matrix.
Suppose we want to approximate a matrix A = Am⇥n with rank r by a matrix
B = Bm⇥n with rank k < r. That is, we want such B to minimize kA� Bk.

Recall a matrix A with rank r has full SVD as follows:

The best rank k approximation to A is

B = U⌃kV
T .

Fact: This matrix B minimizes the distance to A as measured by Frobenius
norm and operator norm:

kA� BkF , kA� Bk2.
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Example. Find the best rank 1 approximation to A =

0

@
1 0
1 1
0 1

1

A .
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