Lecture 37: Quick review from previous lecture

- Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. Let $\mathbf{x}^{*}=A^{+} \mathbf{b}$. Then \mathbf{x}^{*} is the least squares solution to the linear system $A \mathbf{x}=\mathbf{b}$.
If A has n linearly independent columns(ker $A=\{\mathbf{0}\})$, then

$$
\mathbf{x}^{*}=A^{+} \mathbf{b}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b},
$$

where

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T} .
$$

- If $A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}$, then the matrix $A_{k}=\sum_{j=1}^{R(} \sigma_{j} u_{j} v_{j}^{T}, k<r$ minimizes the distance to A, that is,

$$
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\| A-\underline{\underline{A_{k}} \|_{2}} .
$$

$A=A_{m \times n}$ with $\operatorname{rank}(A)=\gamma$.

$$
\begin{aligned}
& \text { (full SVD) } \\
& =\left[u_{1} \ldots u_{m}\right] \\
& \text { Today we will discuss condition }
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma_{1} u_{1} v_{1}^{\top}+\cdots+\sigma_{r} u_{r} v_{r}^{\top} . \\
& =\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{\top}
\end{aligned}
$$

- Lecture will be recorded -

- Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".
§ Condition number
A very useful quantity for understanding the behavior of a matrix is its condition number.

For simplicity, let's take a square matrix $A=A_{n \times n}$, and suppose the rank is $r=n$ (so the matrix is nonsingular). Call the singular values

$$
\stackrel{\sigma_{1}}{\underline{=}} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0 .
$$

Definition: The condition number of a nonsingular $n \times n$ matrix is the ratio between its largest and smallest singular values, namely,

$$
\kappa(A)=\frac{\sigma_{1}}{\sigma_{n}} .
$$

The condition number $\kappa(A)$ measures the "sensitivity of operations" we perform with A to changes in the input data.

Example. Suppose we apply A to a vector $\underline{\underline{\mathbf{x}} . ~ W r i t e ~ t h e ~ S V D ~} \underline{A=U \Sigma V^{T}}$; then we can write

$$
\begin{aligned}
& =\sum_{j=1}^{n} \sigma_{j} u_{j} v_{j}^{\top} \\
A x & =\sum_{j=1}^{n} \sigma_{j} u_{j} v_{j}^{\top} x
\end{aligned}
$$

 the product $A \mathbf{x}$ change?
Pick a small number δ. define $\tilde{x}=x+\delta v_{1}$.

$$
\text { Then } \begin{aligned}
A \tilde{x} & =A\left(x+\delta v_{1}\right) \\
& =A x+\delta A\left(v_{1}\right) \quad \angle \quad A v_{1}=\sum_{1}^{n} \sigma_{i}\left\langle v_{1}, v_{i}\right\rangle u_{i}=\sigma_{1} u_{1} \\
& =A x+\delta \sigma_{1} u_{1}
\end{aligned}
$$

So, $\|A \hat{x}-A x\|_{2}=\left\|\delta \sigma_{1} u_{1}\right\|_{2}=|\delta| \sigma_{1}$ since $\left\|u_{1}\right\|_{2}=1$.
The "relative difference" between $A x$ and $A \tilde{x}$ is the ratio MATH 4242-Week 15-2 $\frac{\|A \tilde{x}-A \times\|_{2}}{\|A \times\|_{2}}=\frac{2}{\| \mid \sigma_{1}}\left(\sigma_{1}^{2}\left\langle x_{1} v_{1}\right\rangle^{2}+\cdots+\sigma_{n}^{2}\left\langle x_{1} v_{n}\right\rangle^{2}\right)^{1 / 2} . ~ S p r i n g ~ 2020 ~$.
[Continue]
For example, we take $x=v_{n}$, then $\left\langle x, v_{i}\right\rangle=0$ if $i \neq n$.
So, the relative difference is

$$
\frac{\|A \tilde{x}-A \times\|_{2}}{\|A \times\|_{2}}=\frac{|\delta| \sigma_{1}}{\sigma_{n}}=|\delta| k(A)
$$

On the other hand,

$$
\frac{\|\tilde{x}-x\|_{2}}{\|x\|_{2}}=\frac{\left\|\delta v_{1}\right\|_{2}}{1}=|\delta| \text {. since }\left\|v_{1}\right\|_{2}=1
$$

We have shown the following:
Fact: For certain vectors \mathbf{x}, perturbing \mathbf{x} by relative amount δ along \mathbf{v}_{1} can result in a change in $A \mathbf{x}$ by relative amount $|\delta| \kappa(A)$.

So, if $\kappa(A)$ is very large, then small changes in \mathbf{x} can result in large changes in $A \mathrm{x}$.

Matrices with large condition numbers are said to be ill-conditioned. One must be careful when working with ill-conditioned matrices, since small errors in inputs can become inflated.

Fact: If A is $n \times n$ nonsingular matrix, then A and A^{-1} have the same condition number.
[To see this] since A is $n \times n$ nonsingular matrix, there are singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0$.
Then singular values of A^{+}are

$$
0<\frac{1}{\sigma_{1}} \leq \frac{1}{\sigma_{2}} \leq \cdots \leq \frac{1}{\sigma_{n}}
$$

So. $K(A)=\frac{\sigma_{1}}{\sigma_{n}}$

$$
K\left(A^{-1}\right)=\frac{1}{\sigma_{n}} / 1 / \frac{\sigma_{1}}{\sigma_{n}} \text {. Thus. } K(A)=K\left(A^{-1}\right)
$$

Fact: If A is $n \times n$ nonsingular matrix, then

$$
\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2} .
$$

$\|A\|_{2}=\sigma_{1}($ largest singular value of $A)$

$$
\begin{aligned}
& \left\|A^{-1}\right\|_{2}=\frac{1}{\sigma_{n}}\left(\quad \text { of } A^{-1}\right) . \\
& \|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma_{n}}=K(A)
\end{aligned}
$$

8.6 Incomplete Matrices

If a matrix is not complete, then it is not similar to a diagonal matrix. For example,

$$
A=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right), \begin{aligned}
& \lambda=2,2 \\
& A-2 I=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

is not complete and so is not diagonalizable.

However, it can be shown that a not complete matrix is similar to a matrix of the following form, called a Jordan matrix:

Here, each matrix $J_{\lambda_{i}, n_{i}}$ is a Jordan block matrix, which is the following n_{i}-by- n_{i} matrix:

$$
J_{\lambda_{i}, n_{i}}=\left(\begin{array}{cccccc}
\boxed{\lambda_{i}} & 1 & & & & \\
& \lambda_{i} & 1 & & & \\
& & \lambda_{i} & 1 & & \\
& & & \ddots & \ddots & \\
& & & & \lambda_{i} & 1 \\
& & & & & \lambda_{i}
\end{array}\right)
$$

The numbers $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of A. The eigenvalue λ_{i} has multiplicity n_{i}, the size of its Jordan block $J_{\lambda_{i}, n_{i}}$.

Note that if each Jordan block were 1-by-1 (ie. $n_{i}=1$ for all i), then the Jordan matrix would be diagonal, and A would be complete.
\S The Jordan Canonical Form. Let's see how we get this Jordan matrix. Throughout this section, we suppose that A is an $n \times n$ matrix. Let

$$
\lambda_{1}, \ldots, \lambda_{k}
$$

be the eigenvalues of A.
Definition: A Jordan chain of length j for a square matrix A is a sequence of nonzero vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{j}$ that satisfies

$$
\underline{A \mathbf{w}_{1}=\lambda \mathbf{w}_{1},} \quad A \mathbf{w}_{i}=\lambda \mathbf{w}_{i}+\mathbf{w}_{i-1}, \quad i=2, \ldots, j,
$$

where λ is an eigenvalue of A.
$E X: j=3, \quad(A-\lambda I) \omega_{1}=0$.

$$
\begin{aligned}
&(A-\lambda I) w_{2}=w_{1} \Rightarrow(A-\lambda I)^{2} w_{2}=(A-\lambda I) w_{1} \\
&(A-\lambda I) \quad w_{3}=w_{2} \Rightarrow(A-\lambda-I)^{3} w_{3}=0
\end{aligned}
$$

$A\left[\begin{array}{lll}w_{1} & w_{2} & w_{3}\end{array}\right]=\begin{array}{llll}w_{1} & w_{2} & w_{3}\end{array}\left[\begin{array}{lll}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$
$\Delta w_{2}=\lambda w_{2}+1 w_{1}$
The initial vector \mathbf{w}_{1} in a Jordan chain is a "genuine" eigenvector. The rest $\mathbf{w}_{2}, \ldots, \mathbf{w}_{j}$ are generalized eigenvectors, in the following definition:
Definition: A nonzero vector $\mathbf{w} \neq \mathbf{0}$ such that

$$
(A-\lambda I)^{k} \mathbf{w}=\mathbf{0} \quad \text { for some } k>0
$$

and λ is a generalized eigenvector of the matrix A.

Example. Find the Jordan form of $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$

$$
\begin{aligned}
& O=\operatorname{det}(A-\lambda I), \quad \pi=2,2 \\
& A-2 I=\left(\begin{array}{cc}
-1 & 1 \\
-1 & 1
\end{array}\right) \quad \operatorname{dim}(N(A-2 I))=1
\end{aligned}
$$

Jordan form $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$.
4

Example. Find the Jordan form of $A=\left(\begin{array}{ccc}-1 & -1 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1\end{array}\right)$

$$
\begin{aligned}
& \lambda=-1,-1,-1 \\
& \operatorname{dim}(N(A+I))=1
\end{aligned}
$$

Jurdon form is $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1\end{array}\right)$.

