
Lecture 39: Quick review from previous lecture

• We have reviewed permuted LU factorization, inverse of a matrix, positive
(semi)definite, determinant, solving a linear system and many others.

—————————————————————————————————
Today we will review some concepts.

- Lecture will be recorded -

—————————————————————————————————

• Information for Final Exam and Course Grade has been posted on Canvas, see
”Announcements”.
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Problem 14: Find the QR factorization of A =

0

@
0 �1 0
0 0 �3
2 �1 �3

1

A. Clearly

identify the orthogonal matrix Q and the upper triangular matrix R.

Problem 15:

a) Find the matrix norm of A =

0

@
�4 0 0
0 �1 0
0 0 7

1

A, with respect to the standard

Euclidean norm kyk2 =
p
y21 + y22 + y23 on R3.
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b) Suppose kxk = 3 and kyk = 1. What is the maximum possible value for hx,yi?
What relationship must hold between x and y if this value is to be achieved?

c) Suppose hx,yi = 0, kxk = 2, kyk = 1, and z = 2x � 3y. What is hx, zi?
What is hy, zi? What is kzk?

Problem 16: Find all vectors in R3 orthogonal to both (1, 2, 0)T and (2, 5, 2)T .
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2) Cy
,
z> = - 3

.

-#

3) 112112 = Cz
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Problem 17: Write down the 2-by-2 matrix A satisfying Av1 = w1 and
Av2 = w2, where v1 = (1, 1)T , v2 = (�1, 1)T , w1 = (1, 1)T , and w2 = (�2,�2)T .

Problem18: Find a 2-by-2 matrix A with eigenvalues 2 and �3 and correspond-
ing eigenvectors (1,�1)T and (1, 0)T .

Problem 19: Write out the SVD of the matrix A =

✓
1 �1
1 �1

◆
.
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Problem 20: Find a 2-by-3 matrixA having rank 1 whose singular value is 2, left
singular vector is u = (1, 2)T/

p
5, and right singular vector is v = (1, 0, 1)T/

p
2,

that is, Av = 2u.

Problem 21: Suppose A is a 2-by-2 real matrix for which 1�2i is an eigenvalue.
Find the trace and determinant of A.

Problem 22: Suppose A is a 2-by-2 symmetric matrix with eigenvalues 3 and
�4. Find the operator norm of A and the Frobenius norm of A.
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Problem 23: Suppose A has characteristic polynomial pA(�) = �2 � 2� + 2.
Find the determinant of A.

Problem 24: Suppose A has characteristic polynomial pA(�) = �2 � 2� + 2.
Find the characteristic polynomial of A�1.

Problem 25: Suppose A = AT is a symmetric 2-by-2 matrix, and detA = 6.
Suppose that Av = 2v, where v = (1, 1)T . Write an spectral factorization of A.
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Problem 26: Let V = P (1) be the space of polynomials of degree  1, andW =
P (2) be the space of polynomials of degree  2. Let L[p](x) =

R x
0 p(t)dt denote the

integration operator. Find the matrix representation of L in the monomial bases
of V and W .

Problem 27: Suppose A is a 3-by-3 matrix with singular values 1,2, and 3.
What is the condition number of A? What are the singular values of A�1? What
are the singular values of AT? What is the determinant of A?
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Problem 28: Suppose A is a matrix with singular values 2, 3 and 8. Suppose
u and v are the left and right singular vectors of A with singular value 8, and let
B = 8uvT . Find kA� Bk2 and kA� BkF .

Problem 29: Suppose A = uvT , where u = (1,�1)T/
p
2 and v = (1, 1)T/

p
2.

Let b = (1, 0)T . Find all least squares solutions to Ax = b. That is, find all
vectors x that minimize kAx�bk2. Also, find the unique vector x that minimizes
kAx� bk2 and has the smallest Euclidean norm.
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