Lecture 39: Quick review from previous lecture

- We have reviewed permuted LU factorization, inverse of a matrix, positive (semi)definite, determinant, solving a linear system and many others.

Today we will review some concepts.

- Lecture will be recorded -

- Information for Final Exam and Course Grade has been posted on Canvas, see "Announcements".

Problem 14: Find the $Q R$ factorization of $A=\left(\begin{array}{rrr}a_{1} & -1_{1}^{a_{2}} & 0 \\ 0 & 0 & -3 \\ 2 & -1 & -3\end{array}\right)$. Clearly identify the orthogonal matrix Q and the upper triangular matrix R.

$$
\begin{aligned}
& v_{1}=a_{1}=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right), \quad, \quad q_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& v_{2}=a_{2}-\frac{\left\langle a_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right), \quad q_{2}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \\
& v_{3}=a_{3}-\frac{\left\langle a_{3} v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle a_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|} v_{2}=\binom{0}{-3}, q_{3}=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

Then $\quad Q=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right)$.

$$
\begin{aligned}
R & =\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right) . \quad \begin{array}{l}
r_{i i}=\left\|v_{i}\right\| \\
r_{i j}=\left\langle a_{j}, q_{i}\right\rangle \\
\end{array} \\
& =\left(\begin{array}{ccc}
2 & -1 & -3 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) . \psi \psi
\end{aligned}
$$

Problem 15:
a) Find the matrix norm of $A=\left(\begin{array}{rrr}-4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 7\end{array}\right)$, with respect to the standard Euclidean norm $\|\mathbf{y}\|_{2}=\sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}$ on \mathbb{R}^{3}.

$$
\|A\|=\max _{1 \leqslant i \leq n}\left|\lambda_{i}\right|=7 .
$$

b) Suppose $\|\mathbf{x}\|=3$ and $\|\mathbf{y}\|=1$. What is the maximum possible value for $\langle\mathbf{x}, \mathbf{y}\rangle$? What relationship must hold between \mathbf{x} and \mathbf{y} if this value is to be achieved?

1) $|\langle x, y\rangle| \leq\|x\|\|y\| .=3$. maximum value is 3
2) $x=3 y \cdot x$
c) Suppose $\langle\mathbf{x}, \mathbf{y}\rangle=0,\|\mathbf{x}\|=2,\|\mathbf{y}\|=1$, and $\mathbf{z}=2 \mathbf{x}-3 \mathbf{y}$. What is $\langle\mathbf{x}, \mathbf{z}\rangle$? What is $\langle\mathbf{y}, \mathbf{z} \overline{\rangle}$? What is $\|\mathbf{z}\|$?

$$
\begin{aligned}
& \text { 1) }\langle x, z\rangle=\langle x, 2 x-3 y\rangle=\langle x, 2 x\rangle-\langle x, 3 y\rangle=2\langle x, x\rangle-3\langle/, y\rangle \\
& =2\|x\|^{2}=\frac{8}{x} \\
& \text { 2) }(y, z\rangle=-3 \text {. } \\
& \text { 3) }\|z\|^{2}=\langle z, z\rangle=\langle 2 x-3 y, 2 x-3 y\rangle=4\langle x, x\rangle-6\langle x, y\rangle \\
& -6\langle y, 2)^{0}+q(y, y) \\
& =4 \cdot 2^{2}+9=25 \text {. }
\end{aligned}
$$

Problem 16: Find all vectors in \mathbb{R}^{3} orthogonal to both $(1,2,0)^{T}$ and $(2,5,2)^{T}$.

$$
\begin{aligned}
& \begin{array}{l}
v_{1}^{\top} \vec{x}=0 \\
v_{2}^{\top} \vec{x}=0
\end{array} \quad\left(\begin{array}{ll}
\sim & A \\
1 & 2 \\
2 & 5 \\
2
\end{array}\right) \vec{x}=0 . \\
& A \xrightarrow{(2)-2(1)}\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right), \vec{x}=\left(\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right) z, \quad z \in \mathbb{R} .
\end{aligned}
$$

Problem 17: Write down the 2-by-2 matrix A satisfying $A \mathbf{v}_{1}=\mathbf{w}_{1}$ and $A \mathbf{v}_{2}=\mathbf{w}_{2}$, where $\mathbf{v}_{1}=(1,1)^{T}, \mathbf{v}_{2}=(-1,1)^{T}, \mathbf{w}_{1}=(1,1)^{T}$, and $\mathbf{w}_{2}=(-2,-2)^{T}$.

$$
\begin{gathered}
A v_{1}=w_{1}: A\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right] \\
A v_{2}=w_{2} \\
A=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right] s^{-1}=\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \\
3 & -1
\end{array}\right) .
\end{gathered}
$$

Problem18: Find a 2 -by-2 matrix A with eigenvalues 2 and -3 and corresponding eigenvectors $(1,-1)^{T}$ and $(1,0)^{T}$.

$$
\begin{array}{rl}
A v_{1}=2 v_{1} & v_{1}^{\prime \prime} \\
A v_{2}=-3 v_{2} & A\left[v_{5}^{v_{1}} \begin{array}{c}
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right] \\
A & =S\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right] \mathrm{s}^{-1}=\left(\begin{array}{cc}
-3 & -5 \\
0 & 2
\end{array}\right) .
\end{array}
$$

Problem 19: Write out the SVD of the matrix $A=\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$.

$$
\begin{array}{ll}
A^{\top} A=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right) . & 0=\operatorname{det}\left(A^{\top} A-\lambda I\right) \\
\lambda=4, & 0 . \\
\lambda=4 & \left(A^{\top} A-4 I\right) v=0, \\
u=\frac{1}{\sqrt{4}}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad \sigma=2
\end{array}
$$

Reduced $S U D$ of A is $A=\frac{1}{\sqrt{2}}\binom{1}{1}[2]\left(\frac{1}{\sqrt{2}} \frac{-1}{\sqrt{2}}\right)$

Problem 20: Find a 2-by-3 matrix A having rank 1 whose singular value is 2, left singular vector is $\mathbf{u}=(1,2)^{T} / \sqrt{5}$, and right singular vector is $\mathbf{v}=(1,0,1)^{T} / \sqrt{2}$, that is, $A \mathbf{v}=2 \mathbf{u}$.

$$
\begin{aligned}
& A=\frac{2 u v^{\top}}{\bar{A}}=\frac{2}{\sqrt{5}}\binom{1}{2} \quad\left(\begin{array}{lll}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right) \\
&=u[2] v^{\top}=\frac{2}{\sqrt{10}}\binom{1}{2}\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) \\
& \begin{array}{c}
\text { (Reduced SUD })
\end{array} \\
&=\frac{2}{\sqrt{20}}\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

Problem 21: Suppose A is a 2 -by-2 real matrix for which $1-2 i$ is an eigenvalue. Find the trace and determinant of A.

$$
\begin{aligned}
& 1 \pm 2 i \text { are eigenvalues of } A . \\
& \operatorname{det} A=\lambda_{1} \cdots \lambda_{n}=(1+2 i)(1-2 i)=5 \times a_{n n}=\left(a_{i j}\right)_{n \times n} \\
& \text { Trace of } A
\end{aligned}
$$

Problem 22: Suppose A is a 2 -by- 2 symmetric matrix with eigenvalues 3 and -4. Find the operator norm of A and the Frobenius norm of A.
operator norm of $A:\|A\|=\max _{i=i=n}\left|\lambda_{i}\right|=\underline{4}$
Frobenaus norm of $A:\|A\|_{F}=\sqrt{\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}}$

$$
=5
$$

Problem 23: Suppose A has characteristic polynomial $p_{A}(\lambda)=\lambda^{2}-2 \lambda+2$. Find the determinant of A.

$$
\begin{gathered}
\operatorname{det} A=\lambda_{1} \lambda_{2}=2 \cdot \text { 炎 } \\
P_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)=\cdots+\lambda_{1} \lambda_{2}
\end{gathered}
$$

Problem 24: Suppose A has characteristic polynomial $p_{A}(\lambda)^{\prime \prime}=\lambda^{2}-2 \lambda+2$.
Find the characteristic polynomial of A^{-1}.

$$
\begin{aligned}
& P_{A^{-1}}(\tilde{\pi})=\operatorname{det}\left(A^{-1}-\tilde{\lambda} I\right)=\operatorname{det}\left(A^{-1}(I-\tilde{\pi} A)\right) \\
&=\operatorname{det} A^{-1} \cdot \operatorname{det}(I-\tilde{\pi} A) . \\
&=\operatorname{det}\left(A^{-1}\right) \cdot \operatorname{det}\left((-\tilde{\pi})\left(A-\frac{1}{\pi} I\right)\right) \\
& \operatorname{det}\left(A^{-1}\right) \\
&=\frac{1}{\operatorname{det} A}=\frac{1}{2}=\frac{\operatorname{det}\left(A^{-1}\right)}{\frac{1}{2}} \tilde{\pi}^{2} \quad\left(\frac{\operatorname{det}\left(A-\frac{1}{\pi} I\right)}{\left.\left(\left(\frac{1}{\pi}\right)^{2}-\frac{2}{\pi}+2\right)=\tilde{\pi}^{2}-\tilde{\pi}+\frac{1}{\pi}\right)}\right.
\end{aligned}
$$

Problem 25: Suppose $A=A^{T}$ is a symmetric 2-by-2 matrix, and $\operatorname{det} A=6$. Suppose that $A \mathbf{v}=2 \mathbf{v}$, where $\mathbf{v}=(1,1)^{T}$. Write an spectral factorization of A.

$$
6=\operatorname{det} A=2 \cdot \lambda \Rightarrow \lambda=3
$$

v_{2} : Eigenvector of $\lambda=3$. v_{2} is orthogonal to $v=\binom{1}{1}$

$$
\text { Taking } \begin{aligned}
V_{2} & =\binom{1}{-1} \\
A & =\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{\sqrt{2}} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)^{-1} .
\end{aligned}
$$

Problem 26: Let $V=\mathcal{P}^{(1)}$ be the space of polynomials of degree ≤ 1, and $W=$ $\mathcal{P}^{(2)}$ be the space of polynomials of degree ≤ 2. Let $L[p](x)=\int_{0}^{x} p(t) d t$ denote the integration operator. Find the matrix representation of L in the monomial bases of V and W.

$$
\begin{aligned}
& p^{(1)}=\{x, 1\}, p^{(2)}=\left\{x^{2}, x, 1\right\} \\
& L[x]=\int_{0}^{x} t d t=\frac{1}{2} x^{2}+0 \cdot x+0.1 \\
& L[1]=\int_{0}^{x} 1 d t=0 x^{2}+x+0.1
\end{aligned}
$$

Thus, matist representation of L is

$$
A=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

Problem 27: Suppose A is a 3 -by-3 matrix with singular values 1,2 , and 3 . What is the condition number of A ? What are the singular values of A^{-1} ? What are the singular values of A^{T} ? What is the determinant of A ?

1) $K(A)=3 / 1=3$
2) s.v. of $A^{-1}=1, \frac{1}{2}, \frac{1}{3}$
3) $s v_{1}$ of $A^{\top}=1,2,3$.
4) $\operatorname{det} A=\operatorname{det}\left(U \Sigma V^{\top}\right)= \pm 6$ (full SUD)
TNOE that $U^{\top} U=U U^{\top}=I$

$$
\begin{aligned}
& I=\operatorname{det} U^{\top} \operatorname{det} U=(\operatorname{det} U)^{2} \\
& \operatorname{det} U= \pm 1
\end{aligned}
$$

Euclidean matrix norm
Problem 28: Suppose A is a matrix with singular values 2, 3 and 8. Suppose \mathbf{u} and \mathbf{v} are the left and right singular vectors of A with singular value 8 , and let $B=8 \mathbf{u v}^{T}$. Find $\|A-B\|_{2}$ and $\|A-B\|_{F}$.

$$
\begin{aligned}
& A=8 u v^{\top}+3 u_{2} v_{2}^{\top}+2 u_{3} v_{3}^{\top} \\
& A-B=3 u_{2} v_{2}^{\top}+2 u_{3} v_{3}^{\top} \\
& \text { so, }\|A-B\|_{2}=3 \\
& \\
& \|A-B\|_{F}=\sqrt{2^{2}+3^{2}}=\sqrt{13}
\end{aligned}
$$

Problem 29: Suppose $A=\mathbf{u v}^{T}$, where $\mathbf{u}=(1,-1)^{T} / \sqrt{2}$ and $\mathbf{v}=(1,1)^{T} / \sqrt{2}$. Let $\mathbf{b}=(1,0)^{T}$. Find all least squares solutions to $A \mathbf{x}=\mathbf{b}$. That is, find all vectors \mathbf{x} that minimize $\|A \mathbf{x}-\mathbf{b}\|_{2}$. Also, find the unique vector \mathbf{x} that minimizes $\|A \mathbf{x}-\mathbf{b}\|_{2}$ and has the smallest Euclidean norm.

$$
\begin{aligned}
& \|A \mathbf{x}-\mathbf{b}\|_{2} \text { and has the smallest Euclidean norm. } \\
& \text { 1) } A^{t}=V_{2 \times 1}[1] \quad u_{1 \times 2}^{\top}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2}
\end{array}\right)
\end{aligned}
$$

$x^{*}=A^{+} b=\binom{\frac{1}{2}}{\frac{1}{2}}$. has the smallest Eudidean. norm.
2) all least squares solution ace $x^{*}+z$, where $z \in \operatorname{Ker} A$.

Finding a basis for $\operatorname{Ken} A$:
We knew $v=\frac{1}{\sqrt{2}}\binom{1}{1}$ is in coming A, so $z=\binom{1}{-1} t$ is in ked A.
MATH 4242-Week 16- Then $x^{*}+z={ }^{9}\binom{\frac{1}{2}}{\frac{1}{2}}+\binom{t}{-t}, t \in \mathbb{R}$.

