Lecture 4: Quick review from previous lecture

- We have discussed how to find LU factorization for a matrix A has n nonzero pivots :
- either by elementary row operator type 1 (adding/subtracting one row to another row);
- or type 2 (permutation)
pivoting
- A is nonsingular $\Leftrightarrow A$ has a permuted $L U$ factorization: $P A=L U$

Today we will discuss the inverse of a matrix.

- Homework 1 will be due this Friday.

1.5 Matrix Inverse

The inverse of a matrix is analogous to $a^{-1}=\frac{1}{a}$ of a scalar $a \neq 0$.
Thus, for [5] 1 by 1 matrix, it has inverse [$\frac{1}{5}$]. Then

$$
[5]\left[\frac{1}{5}\right]=[1] .
$$

- A is a square matrix, then its inverse A^{-1} is the $n \times n$ matrix satisfying

$$
A A^{-1}=I_{n}=A^{-1} A .
$$

Note that "Not every matrix has an inverse !!!" XXx

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
4 & 0
\end{array}\right) . \text { There is NO matrix win size } 2 \times 2 \\
& \text { sutitying } X A=I_{2} \text { or } A X=I_{2}
\end{aligned}
$$

In fact, we will see a square matrix has an inverse when it is nonsingular.

- We've already seen how to find the inverse of elementary row matrices:

Example. The inverse of the matrix

$$
E=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is simply the matrix

$$
E^{-1}=\left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example. A permutation matrix

$$
P=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) . \quad P P=I_{3} .
$$

Thus,

$$
p^{-1}=P
$$

- In general, however, finding A^{-1} will not be so easy. We will see a systematic method for doing so in the next class, known as Gauss-Jordan elimination.
- In the following, we will discuss 3 key facts:

Fact 1. If the inverse of a matrix exists, then this inverse matrix is unique. In other words, if B and C are both inverse of A, then

$$
A C=I=C A
$$

$$
B=B I=B(A C)=(B A) C=I C=C .
$$

\#

Fact 2. the inverse of the inverse is the original matrix. More precisely, $\left(A^{-1}\right)^{-1}=A$.

Proof. This is an immediate consequence of the defining property of A^{-1}.

$$
A^{-1} A=I . \quad \Rightarrow \quad\left(A^{-1}\right)^{+}=A .
$$

- Continue the 3 key facts:

Fact 3. If A and B are two invertible n-by- n matrices, then their product $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.

$$
\underline{\bar{x}}=B^{-1} A^{-1} .
$$

(1) $\bar{X} A B=\left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{+1} I B=B^{-1} B=I$
(2) $A B \underline{X}=A B\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A^{-1} A^{-1}=I$.

Thus the inverse of $A B$ is $B^{+} A^{-1}=(A B)^{-1}$.

Remark: In general,

$$
\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}
$$

\S The inverse of a 2×2 matrix.
We will find a simple formula of the inverse of 2×2 matrix.
Consider a general 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Let's compute its inverse $X=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ if it exists.
(1)

$$
\begin{aligned}
& A \underline{X}=I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left\{\begin{array}{l}
a x+b z=1 \\
a y+b w=0 \\
c x+d z=0 \\
c y+d w=1
\end{array} \quad \Rightarrow\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)\right.
\end{aligned}
$$

Case 1: $a \neq 0$
(3) $\xrightarrow{-\frac{c}{a}(1)}\left(\begin{array}{cccc|c}a & 0 & b & 0 & 1 \\ 0 & a & 0 & b & 0 \\ 0 & 0 & d-\frac{b c}{a} & 0 & -c / a \\ 0 & c & 0 & d & 1\end{array}\right)$
$\xrightarrow{(4)-\frac{c}{a}(2)}\left(\left.\begin{array}{llll}a & 0 & b & 0 \\ 0 & a & 0 & b \\ 0 & 0 & d-\frac{b c}{a} & 0 \\ 0 & 0 & 0 & d-\frac{b c}{a} .\end{array} \right\rvert\, \begin{array}{c}1 \\ 0 \\ -c / a \\ 1\end{array}\right)$.

$$
W=\frac{a}{a d-b c} \quad \text { if } \quad a d-b c \neq 0
$$

A has M inverse if $\quad a d-b c=0$

$$
x=\frac{d}{a d-b c}, y=\frac{-b}{a d-b c}, z=\frac{-c}{a d-b c}
$$

[Continue the computation:]
Case $2=a=0, c \neq 0$. Similar computation gives the same formula for x, y, z, w. if $a d-b<\neq 0$.

Case 3 $=a=0=c$.
A has ND in verse.
(2) $\mathbb{X} A=I_{2}$. Following a simitar computation as above. \&

Remark:

- If $a d-b c \neq 0$, then the 2-by-2 matrix $A=\left(\begin{array}{ll}a_{<} & b \\ c^{b} & d\end{array}\right)$ has an inverse given by:

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

- The number " $a d-b c$ " is known as the determinant of A, denoted by

$$
\operatorname{det}(A)=a d-b c .
$$

- In general, the determinant $\operatorname{det}(A)$ can be defined for a square matrix A of any size [Will discussed in later lectures], and
A is invertible if and only if $\operatorname{det}(A) \neq 0$.

