Lecture 1: Welcome to M4242

Today we will discuss

- how to solve a linear system.
- Lecture will be recorded -

Lecture 1: Chapter 1. Linear Algebraic Systems 1.1 The Solution of Linear Systems

What is linear system? For example:

$$
\begin{aligned}
5 x+7 y+3 z & =2 \\
2 x+y+6 z & =-1 \quad \text { linear system } . \\
x-10 y+3 z & =5
\end{aligned}
$$

(3 equations with 3 unknowns x, y, z), or

$$
\begin{array}{r}
w+5 x+7 y+3 z=2 \\
2 w+2 x+y-6 z=1 \\
3 w+x+10 y+3 z=5 \\
2 w-9 x+4 y+0.22 z=7
\end{array}
$$

(4 equations with 4 unknowns w, x, y, z).
Goal:Given such a system of equations, we want to find the variables x, y, z, \ldots that satisfy all equations simultaneously.

We will learn Gaussian Elimination, that is to reduce the original system to a much simpler system that still has the same solution.

Example 1: Find solutions of the following linear system:

$$
\begin{aligned}
x-2 y+z & =3 \\
2 x-y-2 z & =6 \\
& \text { - } \\
3 x-7 y+4 z & =10
\end{aligned}
$$

1. Fix x in (1). Use (1) to eliminate " x " in (2) (3).
(2)-2(1): $2 x-y-2 z=6$

$$
\begin{align*}
2 x-4 y+2 z & =6 . \\
3 y-4 z & =0 . \text { New }
\end{align*}
$$

(3) -3 (1)

$$
\begin{align*}
3 x-7 y+4 z & =10 \\
-) 3 x-6 y+3 z & =9 \\
-y+z & =1 \tag{3}
\end{align*}
$$

Now sy stem: but is simpler.
2. Fix y in (2), Use (3) to elimincice " y " in (3).
(3) $+\frac{1}{3}$ (2)

$$
\begin{equation*}
-\frac{4}{3} z+z=1 \Rightarrow-\frac{1}{3} z=1 \tag{1}
\end{equation*}
$$

 trianyulas form.
3. Solve
[Example Continue]
(3)

$$
\begin{aligned}
& \text { mole Continue] }-\frac{1}{3} z=1 \Rightarrow z=-3 \\
& \text { (2) : } 3 y-4(-3)=0 \Rightarrow y=-4
\end{aligned}
$$

$$
\text { (1) }: x-2(-4)+(-3)=3 \Rightarrow x=-2
$$

$$
(x, y, z)=(-2,-4,-3)
$$

Remark: (1) If we have n equations, n knowns:

Finally we get "upper triangular form". This is called "Gaussian el,minortin".
(2) Back substitution: Solve this triangular from system from bottom up.

1.2 Matrices and Vectors and Basic Operations

A matrix is simply a rectangle array of numbers, such as, ist columa

$$
\left(\begin{array}{cc}
\cos (1) & 1 \\
4 & 6 \\
-10 & e^{2}
\end{array}\right)
$$

The 1st matrix above is a 2×4 matrix and 2nd matrix above is a 3×2 matrix.
Generally, an $m \times n$ matrix A is a two-dimensional array of $m \cdot n$ numbers:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \quad \begin{aligned}
& \boldsymbol{a}_{\mathbf{1 2}}: \mathbf{1}^{\text {st }} \text { vow, } \\
& 2^{\text {nd }} \text { column. }
\end{aligned}
$$

where m is the number of rows and n is the number of columns.
The element $a_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$, is called the entry of A.
A column vector is a matrix where $n=1$:

$$
\mathbf{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right)
$$

A row vector is a matrix where $m=1$:

$$
\mathbf{w}=\left(w_{1} w_{2} \cdots w_{n}\right)
$$

§ Three basic operations: same size.

1. Matrix addition:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right)
$$

2. Scalar multiplication: If c is a number, we can multiply a matrix by c :

$$
c \times\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{cccc}
c \cdot a_{11} & c \cdot a_{12} & \cdots & c \cdot a_{1 n} \\
c \cdot a_{21} & c \cdot a_{22} & \cdots & c \cdot a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c \cdot a_{m 1} & c \cdot a_{m 2} & \cdots & c \cdot a_{m n}
\end{array}\right)
$$

3.

Matrix multiplication:

$$
\begin{aligned}
& \text { x multiplication: column vector } \left.\quad \begin{array}{c}
\left(v_{1} \cdots, v_{p}\right) \cdot\left(w_{1}, \ldots, w_{p}\right) \\
=v_{1} w_{1}+\cdots+v_{p} w_{p} \text { ? } \\
\left(v_{1} \cdots\right. \\
\text { row vector } \\
v_{p}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{p}
\end{array}\right)_{p \times 1}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{p} w_{p}
\end{aligned}
$$

Generally, if $A=\left(a_{i j}\right)$ is $m \times n$ matrix and $B=\left(b_{i j}\right)$ is $n \times p$ matrix, then their product $C=A B$ is $n \times p$ matrix and has entries:

$$
c_{i j}=\left(i^{\text {th }} \text { row of } A\right) \times\left(j^{\text {th }} \text { column of } B\right)
$$

$$
\left.\begin{array}{rl}
C & =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & \cdots & & a_{m n}
\end{array}\right)\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 p} \\
\vdots & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n p}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 p} \\
\vdots & \vdots & & \\
c_{m 1} & \cdots & & \cdots
\end{array}\right) \\
c_{m p}
\end{array}\right)_{m \times p}=\left(\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right)\left(\begin{array}{c}
b_{11} \\
\vdots \\
b_{n 1}
\end{array}\right)=a_{11} b_{11}+\ldots+a_{n n} b_{n 1} .
$$

Remark:

- Matrix multiplication is associative: $(A B) C=A(B C)$
- Not commutative: in general, $A B \neq B A$.

Example 1: Let $A=(0,1,2)$ and
(1) $\times 3$

$$
B=\left(\begin{array}{ll}
1 & 3 \\
0 & 4 \\
1 & 5
\end{array}\right)_{3 \times(2)}
$$

Compute $A B$ and $3 B$. Can we compute $B A$? (NO).

$$
\begin{aligned}
& A B=\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
0 & 4 \\
1 & 5
\end{array}\right)=\left(\begin{array}{lll}
2 & 14
\end{array}\right)_{1 \times 2} \\
& 3 B=\left(\begin{array}{rr}
3 & 9 \\
0 & 12 \\
3 & 15
\end{array}\right)_{3 \times 2}
\end{aligned}
$$

§ Vectors, matrices give a convenient notation for linear systems.
For example,
linear system
$\left\{\begin{array}{cc}x-2 y+z & =3 \\ 2 x-y-2 z & =6 \\ 3 x-7 y+4 z=10\end{array}\right.$$\quad$ is equivalent to : $\left(\begin{array}{cc}A & \left(\begin{array}{cc}1 & -2\end{array}\right. \\ 2 & -1 \\ 3 & -2 \\ 3 & -7\end{array}\right)\left(\begin{array}{l}x \\ y \\ y \\ z\end{array}\right)=\left(\begin{array}{c}\overrightarrow{\mathbf{x}} \\ 6 \\ 10\end{array}\right)$

In more compact notation, we can write: $\mathrm{A} \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
1 & -2 & 1 \\
2 & -1 & -2 \\
3 & -7 & 4
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
3 \\
6 \\
10
\end{array}\right)
$$

* Note that the solution \mathbf{x} was obtained in Example 1 above.
§ Some special matrices and notations that we will see and utilize many times in this course.
- The n-by- n identity matrix, typically denoted I or I_{n} defined by:

$$
I=I_{n}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)_{n \times n}
$$

In other words, I has 1's on the main diagonal, and the off-diagonal elements are 0 . It's easy to check that

$$
I_{n} \underline{\underline{A}}=\underline{\underline{A}} \text { and } \underline{\underline{B}} I_{n}=B
$$

for any matrix A with n rows and any matrix B with n columns.

- The m-by- n zero matrix, typically denoted O or $O_{m \times n}$, which has all zero entries. It's easy to check that

$$
O_{m \times \text { @ }}^{1 \times \times \times}=O_{m \times k} \quad \text { for any } n \text {-by- } k \text { matrix } A
$$

and

$$
\underset{k \times m}{B O_{m \times n}}=O_{k \times n} \quad \text { for any } k \text {-by- } m \text { matrix } B .
$$

- We denote by $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ the following n-by- n matrix:

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)=\left(\begin{array}{cccccc}
a_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{2} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & a_{n}
\end{array}\right)
$$

Using this notation, $I_{n}=\operatorname{diag}(1, \ldots, 1)$
§ The augmented matrix for a linear system appends the right hand side as an extra column to the coefficient matrix.

For example, the augmented matrix for the linear system

$$
\begin{array}{r}
x+2 y+2 z=2 \\
2 x+6 y=1 \\
4 x+4 z=0
\end{array}
$$

is the 3 -by- 4 matrix:

$$
\left(\begin{array}{llll}
1 & 2 & 2 & 2 \\
2 & 6 & 0 & 1 \\
4 & 0 & 4 & 0
\end{array}\right)
$$

For clarity, the augmented matrix can also be written as:

$$
\left(\begin{array}{lll|l}
1 & 2 & 2 & 2 \\
2 & 6 & 0 & 1 \\
4 & 0 & 4 & 0
\end{array}\right)
$$

Gaussian elimination can be expressed entirely in terms of the augmented matrix. Also, the operations of Gaussian elimination can be used to update the augmented matrix.

