Today we will discuss

• how to solve a **linear system**.

- Lecture will be recorded -

Lecture 1: Chapter 1. Linear Algebraic Systems 1.1 The Solution of Linear Systems

What is linear system? For example:

Goal:Given such a system of equations, we want to find the variables x, y, z, ... that satisfy all equations simultaneously.

We will learn **Gaussian Elimination**, that is to reduce the original system to a much simpler system that still has the same solution.

Example 1: Find solutions of the following linear system:

$$\frac{(-2y+z=3)}{2y-y-2z=6} - (2)$$

$$\frac{2y-y-2z=6}{3x-7y+4z=10} - (3)$$
1. Fix x m(). Use 0 to eliminate "x" m(2)(3).

$$\frac{(2-2)}{2}: 2x-y-z=6$$

$$\frac{(-)}{2}2x-4y+z=6.$$

$$\frac{(-)}{3}2x-4y+z=6.$$

$$\frac{(-)}{3}2x-4y+z=6.$$

$$\frac{(-)}{3}x-6y+3z=9$$

$$-y+z=1$$
 And the came "solution of the original one, but is complex.

$$\frac{(-y)+z=1}{y+z=1}$$
 as the original one, but is complex.

$$\frac{(3)-3}{(-y)+z=1} + \frac{(-)}{3} + \frac{$$

MATH 4242

Remark: (1) If we have *n* equations, *n* knowns: $\begin{cases}
equ.(1) & Vse & U \\
equ.(2) & Vse & U
\end{cases}$ $True = Get \quad upper trangalar true from (2) \dots (n)$ $True = Get \quad upper trangalar true for the true for$

(2) **Back substitution:** Solve this triangular from system from bottom up.

1.2 Matrices and Vectors and Basic Operations

A matrix is simply a rectangle array of numbers, such as,

$$\begin{bmatrix} 1^{\text{st}} & 1 & 0.7 & 10 & 0 \\ 2^{\text{nd}} & 1 & 6 & 0 & -2 \end{bmatrix}, \qquad \begin{pmatrix} \cos(1) & 1 \\ 4 & 6 \\ -10 & e^2 \end{pmatrix}$$

The 1st matrix above is a 2×4 matrix and 2nd matrix above is a 3×2 matrix. Generally, an $m \times n$ matrix A is a two-dimensional array of $m \cdot n$ numbers:

where m is the number of rows and n is the number of columns. The element a_{ij} , $1 \le i \le m$, $1 \le j \le n$, is called the **entry** of A.

A column vector is a matrix where n = 1:

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix}$$

A row vector is a matrix where m = 1:

$$\mathbf{w} = (w_1 \, w_2 \, \cdots \, w_n)$$

Remark:

- Matrix multiplication is associative: (AB)C = A(BC)
- Not commutative: in general, $AB \neq BA$.

Example 1: Let A = (0, 1, 2) and $B = \begin{pmatrix} 1 & 3 \\ 0 & 4 \\ 1 & 5 \end{pmatrix}$. Compute AB and 3B. Can we compute \underline{BA} ? (ND). $AB = (0 \ 1 \ 2) \qquad \begin{pmatrix} 1 & 3 \\ 0 & 4 \\ 1 & 5 \end{pmatrix} = (2 \ 14)$ $BB = \begin{pmatrix} 3 & 9 \\ 0 & 12 \\ 3 & 15 \end{pmatrix}_{3 \times 2}$.

§ Vectors, matrices give a convenient notation for linear systems. For example,

linear system $\begin{cases} x - 2y + z = 3\\ 2x - y - 2z = 6\\ 3x - 7y + 4z = 10 \end{cases}$ is equivalent to : $\begin{pmatrix} A & A & A & A \\ 1 - 2 & 1 \\ 2 - 1 & -2 \\ 3 & -7 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 10 \end{pmatrix}$

In more compact notation, we can write: $\mathbf{A} \mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & -2 \\ 3 & -7 & 4 \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 3 \\ 6 \\ 10 \end{pmatrix}$$

* Note that the solution \mathbf{x} was obtained in Example 1 above.

§ Some special matrices and notations that we will see and utilize many times in this course.

• The *n*-by-*n* identity matrix, typically denoted I or I_n , defined by:

$$I = I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

In other words, I has 1's on the main diagonal, and the off-diagonal elements are 0. It's easy to check that

$$I_n \underline{A} = \underline{A}$$
 and $\underline{B} I_n = B$

for any matrix A with n rows and any matrix B with n columns.

The *m*-by-*n* **zero matrix**, typically denoted *O* or $O_{m \times n}$, which has all zero entries. It's easy to check that

$$O_m \times O_m \times A = O_m \times k$$
 for any *n*-by-*k* matrix *A*

and

 $BO_{m \times n} = O_{k \times n}$ for any k-by-m matrix B.

• We denote by $diag(a_1, \ldots, a_n)$ the following *n*-by-*n* matrix:

$$\operatorname{diag}(a_1, \dots, a_n) = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & a_n \end{pmatrix}$$
Using this notation, $I_n = \operatorname{diag}(1, \dots, 1)$

§ The **augmented matrix** for a linear system appends the right hand side as an extra column to the coefficient matrix.

For example, the augmented matrix for the linear system

$$x + 2y + 2z = 2$$
$$2x + 6y = 1$$
$$4x + 4z = 0$$

is the 3-by-4 matrix:

	1	2	2	2
	2	6	0	1
$\left(\right)$	4	0	4	0 /

For clarity, the **augmented matrix** can also be written as:

(1	2	2	2
	2	6	0	1
(4	0	4	0/

Gaussian elimination can be expressed entirely in terms of the augmented matrix. Also, the operations of **Gaussian elimination** can be used to update the augmented matrix.