## Lecture 10: Quick review from previous lecture

- Definition: A vector space is a set $V$ equipped with two operations:
(1) (Addition) If $\mathbf{v}, \mathbf{w} \in V$, then $\mathbf{v}+\mathbf{w} \in V$.
(2) (Scalar Multiplication) Multiplying a vector $\mathbf{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c \mathbf{v} \in V$.

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all scalars $c, d \in \mathbb{R}$ :
(a) Commutativity of Addition: $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$.
(b) Associativity of Addition: $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
(c) Additive Identity: There is azero element $\mathbf{0} \in V$ satisfying $\mathbf{v}+\mathbf{0}=\mathbf{v}=\mathbf{0}+\mathbf{v}$.
(d) Additive Inverse: For each $\mathbf{v} \in V$ there is an element $-\mathbf{v} \in V$ such that

$$
\mathbf{v}+(-\mathbf{v})=\mathbf{0}=(-\mathbf{v})+\mathbf{v} .
$$

(e) Distributivity: $(c+d) \mathbf{v}=(c \mathbf{v})+(d \mathbf{v})$, and $c(\mathbf{v}+\mathbf{w})=(c \mathbf{v})+(c \mathbf{w})$.
(f) Associativity of Scalar Multiplication: $c(d \mathbf{v})=(c d) \mathbf{v}$.
(g) Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies $1 \mathbf{v}=\mathbf{v}$.

Today we will discuss

- Sec. 2.2 Subspace and Sec. 2.3 Span and Linear Independence.
- Lecture will be recorded -

(2) $W$ is vector space.
$\checkmark$ "Subspaces" are vector spaces that are embedded in larger vector spaces.

If we want to check if $W \subset V$ is a subspace of $V$, it is enough to check the following 3 conditions:

1. $W$ must contain zero element of $V$
2. If $\mathbf{v}$ and $\mathbf{w}$ in $W$, then $\mathbf{v}+\mathbf{w} \in W$.
3. If $\mathbf{v} \in W$ and $c \in \mathbb{R}$, then $c \mathbf{v} \in W$.

## Example 1:

(1) $W=\{0\}$ is the trivial subspace of the vector space $\mathbb{R}^{n}$.
(1) $0 \in W$
(2) $0+0=0 \in W$
(3) $C O=0 \in W$
(2) $S=\left\{(x, y, 0)^{T}\right\}$ is a subspace of the vector space $\mathbb{R}^{3}$.
(1) $(0,0,0)^{\top} \in S$.
(2) $(x, y, 0)^{\top}+(a, b, 0)^{\top}=(x+a, y+b, 0)^{\top} \in S$.
(3) $c(x, y, 0)^{\top}=(c x, c y, 0)^{\top} \in S$.

Example 2:
(1) $S=\left\{(x, y, 1)^{T}\right\}$ is NOT a subspace of the vector space $\mathbb{R}^{3}$.
(1) $(0,0,0) \& S$.
(2) $(a, b, 1)+(c, d, 1)=(a+c, b+d, 2) \notin S$.
(3) $\eta(1,1,1)=(7,7,7) \notin S$
(2) Is $S=\{x \geq 0, y \geq 0, z=0\}$ a subspaces of $\mathbb{R}^{3}$ ?
(1) $(0,0,0) \in S$,
(2) $0 k$
(3) $-7(1,1,0)=(-7,-7,0) \& 5$.
(3) Another interesting example is the space of solutions to a linear homogeneous differential equation on $[a, b]$, for example,
homage eneons

$$
S=\left\{u \in \mathcal{F}([a, b]): u \text { is the solution to } u^{\prime \prime}(x)+9 u(x)=0 .\right.
$$

$(Y$ es $)$ s $S$ a subspace of $\mathcal{F}([a, b])$ ? Recall $\underline{\mathcal{F}([a, b])}$ is the collection of all functions $f$ defined on an interval $[a, b] \quad$ vector space.
(1) $0^{\prime \prime}+9 \overline{0}=0$. $0 \in S$.
(2) $u, w \in S . \quad\left\{\begin{array}{l}u^{\prime \prime}+q u=0 \\ w^{\prime \prime}+q w=0 .\end{array}\right.$

Check $u+w \in S:(u+w)^{\prime \prime}+q(u+w)=u^{\prime \prime}+w^{\prime \prime}+q u+q w$
Then ute 6 S.

$$
=0+0=0
$$

(3) $u \in S$, Check $c u \in S:(c u)^{\prime \prime}+q(c u)=c\left(n^{\prime \prime}+q u\right)$

Remark: 0 is essential for Example 2 (3) above. 0 .
 Ts MI subspace

Recall: We denote the set of all $m \times n$ matrices with entries from $\mathbb{R}$ by
$\mathrm{M}_{m \times n}(\mathbb{R}):=\{A: A$ is $m \times n$ matrix $\} \quad$ (Recall that it is a vector space)
Example 3: The set of all $3 \times 3$ upper triangular matrix is a subspace of $M_{3 \times 3}(\mathbb{R}) . S=\left\{\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right]: a, b, \ldots, f \in \mathbb{R}\right\} \leq M_{3 \times 3}$.
(1) $O_{3 \times 3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \in S$.
(2) $A, B \in S, A=\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right], B=\left[\begin{array}{lll}\tilde{a} & \tilde{b} & \tilde{c} \\ 0 & \tilde{d} & \tilde{e} \\ 0 & 0 & \tilde{f}\end{array}\right]$

$$
A+B=\left[\begin{array}{ccc}
a+\tilde{a} & b+\tilde{b} & c+\tilde{c} \\
0 & d+\tilde{j} & e+\tilde{e} \\
0 & 0 & f+\tilde{f}
\end{array}\right] \in S
$$

(3) $c A \in S$

### 2.3 Span and Linear Independence

Definition: Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in a vector space $V$. If we take any scalars $c_{1}, \ldots, c_{n}$, we can form a new vector in $V$ as follows:

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\sum_{L=1}^{n} c_{i} \mathbf{v}_{i} \text { linear combination }
$$

An expression of this kind is known as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
Example 1. If we have vectors $\mathbf{v}_{1}=(1,2)^{T}, \mathbf{v}_{2}=(-1,0)^{T}$ and $\mathbf{v}_{3}=(2,-1)^{T}$ in $\mathbb{R}^{2}$, we can form the linear combination

$$
2 \mathbf{v}_{1}-\mathbf{v}_{2}+3 \mathbf{v}_{3}=2(1,2)^{T}-(-1,0)^{T}+3(2,-1)^{T}=\frac{9,1)^{T}}{\text { 人. combination }} \text { of } \boldsymbol{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}} .
$$

(zen element)
Example 2. We observe that $0 \mathbf{v}=\mathbf{0}$ for each $\mathbf{v} \in V$. Thus $\mathbf{0}$ vector is a linear combination of any nonempty subset of $V$.

Definition: If we fix some vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in a vector space $V$, we can consider the set of all of their linear combinations, This set is called the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, denoted

## $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

In other words,

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}=\left\{\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}: c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}
$$

Remark: In fact, $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of $V$.
(1) $O v_{1}=0 \in \operatorname{span}\left\{v_{1} \ldots, v_{n} \mid\right.$.
(2) $\sum_{\text {MATH }}^{29242 \text { Week }\{-2} a_{i} v_{i}+\sum b_{i} v_{i}=\sum_{5}\left(a_{i}+b_{i}\right) v_{i} \in \operatorname{span}\left\{v_{1}\right.$ Spinning $\left.v_{20}\right\}$.
(3) $c\left(\sum a_{i} v_{i}\right)=\sum\left(c a_{i}\right) v_{i} \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$

Example 3. (1) Let $\mathbf{v}_{1}=(1,2,3)^{T}$. What does span $\left\{\mathbf{v}_{1}\right\}$ consist of in $\mathbb{R}^{3}$ ?

$$
\lambda_{(1,2,3)}
$$ $\operatorname{span}\left\{v_{1}\right\}=\left\{c v_{1} \mid c \in \mathbb{R}\right\}$, line.

(2) What does span $\left\{(0,1,0)^{T},(0,0,1)^{T}\right\}$ consist of in $\mathbb{R}^{3}$ ?

$$
\begin{aligned}
& \operatorname{span}\left[(0,1,0)^{\top},(0,0,1)^{\top}\right\} \\
= & \left\{a(0,1,0)^{\top}+b(0,0,1)^{\top} \mid a, b \in \mathbb{R}\right]
\end{aligned}
$$

$$
=\left\{\begin{array}{l}
\left.(0, a, b)^{\top} \mid \text { a, } b \in \mathbb{R}\right\}=y z \text {-plane } \\
\text { example 4. If } v_{1}=c \mathbf{v}_{2} \text { in } \mathbb{R}^{3} \text {. then what is span }\left\{\mathbf{v}_{1}, v_{0}\right\} ?
\end{array}\right.
$$

Example 4. If $\mathbf{v}_{1}=c \mathbf{v}_{2}$ in
$($ parallel ) $\mathbb{R}^{3}$, then what is $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} ?=\operatorname{span}\left\{v_{1}\right\}=\operatorname{span}\left\{v_{2}\right\}$

$$
\begin{aligned}
\operatorname{span}\left\{v_{1}, v_{2} \mid\right. & =\left\{a v_{1}+b v_{2} \mid a, b \in \mathbb{R}\right\} \\
& =\left\{a\left(c v_{2}\right)+b v_{2} \mid a, b \in \mathbb{R}\right\} . \\
& =\operatorname{span}\left\{v_{2} \mid .\right.
\end{aligned}
$$

Remark:

- If $\mathbf{v}_{1} \neq 0$ in $\mathbb{R}^{3}$, then span $\left\{\mathbf{v}_{1}\right\}$ is the line $\left\{c \mathbf{v}_{1}: c \in \mathbb{R}\right\}$.
- If $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are two non-zero vectors in $\mathbb{R}^{3}$ that are parallel to each other (i.e. $\mathbf{v}_{1} \neq c \mathbf{v}_{2}$ for any scalar $c$ ), then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ defines a plane.

Example 5. Determine the span of $f_{1}(x)=1, f_{2}(x)=x, f_{3}(x)=x^{2}$.

$$
\begin{aligned}
\operatorname{span}\left[1, x, x^{2}\right\} & =\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right] . \\
& =p^{(2)}
\end{aligned}
$$

$$
P^{(n)}(\text { pul of degree } \leq n)=\operatorname{span}_{6}\left\{1, x, \ldots, x^{n}\right\} \text {. }
$$

Example 6. The span of the matrices $\left(\begin{array}{c}A_{1} \\ 1\end{array} 0\right.$ is $M_{2 \times 2}(\mathbb{R})$.

$$
\begin{aligned}
\operatorname{span}\left[A_{1} \ldots A_{4}\right\} & =\left\{a A_{1}+b A_{2}+c A_{1}+d A_{4} \left\lvert\, \begin{array}{c}
a, b \\
c, d \in \mathbb{R}
\end{array}\right.\right] \\
& =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)|a, b, c, d \in \mathbb{R}|\right. \\
& =M_{2 \times 2}(\mathbb{R}) .
\end{aligned}
$$

Note that $\operatorname{span}\left\{(1,0,0)^{T},(0,1,0)^{T},(0,0,1)^{T}\right\}=\mathbb{R}^{3}$.
Example 7. Let $\mathbf{v}_{1}=(1,0,0)^{T}, \mathbf{v}_{2}=(0,1,1)^{T}, \mathbf{v}_{3}=(1,0,1)^{T}$.
Show span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\mathbb{R}^{3}$. (1) $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
(2) $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \geq \mathbb{R}^{3}$

Take any vector $(x, y, z)^{\top} \in \mathbb{R}^{3}$, to check if $(x, y, z)^{\top}$ is $l$ combination of $v_{1}, v_{2}, v_{3}$.

If so, $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=a v_{1}+b v_{2}+c v_{3}$,
Find $a, b, c$.

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
1 \\
z
\end{array}\right) & =\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
& A & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] . \\
& =\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
\end{aligned}
$$

If $A$ invertible, then $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=A^{-1}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
$\operatorname{det} A=1 \neq 0$ so $A$ is mwertibl. This implies $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ really exists, and thus $(x, y, z)^{\top} 3 a^{c}{ }^{c}{ }_{7}$, combination of $v$, ypringovez.

Poll Question 1: With the usual matrix addition and scalar multiplication

$$
\mathrm{M}_{4 \times 5}(\mathbb{R}):=\{A: A \text { is } 4 \times 5 \text { matrix }\}
$$

is a vector space.
4) Yes
B) No

Poll Question 2: With the usual matrix addition and scalar multiplication

$$
\mathrm{M}_{2 \times 2}(\mathbb{R}):=\left\{A: A \text { is } 2 \times 2 \text { matrix with the form } A=\left(\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right)\right\}
$$

is a vector space.
A) Yes
B) No

* You should be able to see the pop up Zoom question. Answer the question by clicking the corresponding answer and then submit.

Caution: after clicking submit, you will not be able to resubmit your answer!

