Lecture 10: Quick review from previous lecture

- **Definition:** A **vector space** is a set V equipped with two operations:
 - (1) (Addition) If $\mathbf{v}, \mathbf{w} \in V$, then $\mathbf{v} + \mathbf{w} \in V$.
 - (2) (Scalar Multiplication) Multiplying a vector $\mathbf{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c\mathbf{v} \in V$.

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all scalars $c, d \in \mathbb{R}$:

- (a) Commutativity of Addition: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.
- (b) Associativity of Addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- (c) Additive Identity: There is a zero element $\mathbf{0} \in V$ satisfying $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$.
- (d) Additive Inverse: For each $\mathbf{v} \in V$ there is an element $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0} = (-\mathbf{v}) + \mathbf{v}.$
- (e) Distributivity: $(c+d)\mathbf{v} = (c\mathbf{v}) + (d\mathbf{v})$, and $c(\mathbf{v} + \mathbf{w}) = (c\mathbf{v}) + (c\mathbf{w})$.
- (f) Associativity of Scalar Multiplication: $c(d\mathbf{v}) = (cd)\mathbf{v}$.
- (g) Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies $1\mathbf{v} = \mathbf{v}$.

Today we will discuss

• Sec. 2.2 Subspace and Sec. 2.3 Span and Linear Independence.

- Lecture will be recorded -

If we want to check if $W \subset V$ is a subspace of V, it is enough to check the following 3 conditions:

- 1. W must contain **zero element** of V
- 2. If \mathbf{v} and \mathbf{w} in W, then $\mathbf{v} + \mathbf{w} \in W$.
- 3. If $\mathbf{v} \in W$ and $c \in \mathbb{R}$, then $c\mathbf{v} \in W$.

Example 1:

(1) W = {0} is the trivial subspace of the vector space ℝⁿ.
O ∈ W
O + O = O ∈ W

 $(3) \quad CO = O \in W$

(2) $S = \{(x, y, 0)^T\}$ is a subspace of the vector space \mathbb{R}^3 . () $(0, 0, 0)^T \in S$. () $(x, y, 0)^T + (a, b, 0)^T = (x + a, y + b, 0)^T \in S$. () $C(x, y, 0)^T = (Cx, cy, 0)^T \in S$. Example 2:

(1)
$$S = \{(x, y, 1)^T\}$$
 is NOT a subspace of the vector space \mathbb{R}^3 .
(1) $S = \{(x, y, 1)^T\}$ is NOT a subspace of the vector space \mathbb{R}^3 .
(2) $(a, b, 1) + (c, d, 1) = (a + c, b + d, 2) \notin S$.
(3) $7(1, 1, 1) = (7, 7, 7) \notin S$.
(4) $7(1, 1, 1) = (7, 7, 7) \notin S$.
(5) $2 + (x \ge 0, y \ge 0, z = 0)$ a subspaces of \mathbb{R}^3 ?
(6) $(0, 0, 0) \in S$.
(7) $(0, 0, 0) \in S$.
(8) $-7(1, 1, 0) = (-7, -7, 0) \notin S$.
(9) Another interesting example is the space of solutions to a linear homogeneous differential equation on $[a, b]$, for example, homogeneous

 $S = \{ u \in \mathcal{F}([a, b]) : u \text{ is the solution to } u''(x) + 9u(x) = 0 \}.$

(Yes)'s S a subspace of $\mathcal{F}([a, b])$? Recall $\mathcal{F}([a, b])$ is the collection of all functions f defined on an interval [a, b] $0 \quad 0 \quad + \quad 9 \quad 0 \quad = \quad 0$ $0 \quad \in \quad S$. $2 \quad u, \quad w \quad \in \quad S$. $(u, \quad w) \quad + \quad 9 \quad u \quad = \quad 0$ $(u + w) \quad + \quad 9 \quad u \quad = \quad 0$. $(u + w) \quad + \quad 9 \quad (u + w) \quad = \quad 0$. $(u + w) \quad = \quad 0$. $(u + w) \quad + \quad 9 \quad (u + w) \quad = \quad 0$. $(u + w) \quad = \quad 0$. (u

T<

MATH 4242-Week 4-2 $S = [u] u''_3 q_u = 1$

Spring 2021

Subspace

Recall: We denote the set of all $m \times n$ matrices with entries from \mathbb{R} by $M_{m \times n}(\mathbb{R}) := \{A : A \text{ is } m \times n \text{ matrix}\}$ (Recall that it is a vector space) Example 3: The set of all 3×3 upper triangular matrix is a subspace of $M_{3\times 3}(\mathbb{R})$. $S = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in S \right\}$ $O_{3\times 3} = \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in S$ $O_{3\times 3} = \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in S$ $O_{3\times 3} = \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in S$ $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0$

2.3 Span and Linear Independence

Definition: Suppose $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are vectors in a vector space V. If we take any scalars c_1, \ldots, c_n , we can form a new vector in V as follows:

$$c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n = \sum_{i=1}^n c_i\mathbf{v}_i$$

An expression of this kind is known as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Example 1. If we have vectors $\mathbf{v}_1 = (1, 2)^T$, $\mathbf{v}_2 = (-1, 0)^T$ and $\mathbf{v}_3 = (2, -1)^T$ in \mathbb{R}^2 , we can form the linear combination

$$2\mathbf{v}_{1} - \mathbf{v}_{2} + 3\mathbf{v}_{3} = 2(1,2)^{T} - (-1,0)^{T} + 3(2,-1)^{T} = \underbrace{(9,1)^{T}}_{\text{ot}}$$

Example 2. We observe that $0\mathbf{v} = \mathbf{0}$ for each $\mathbf{v} \in V$. Thus $\mathbf{0}$ vector is a linear combination of any nonempty subset of V.

Definition: If we fix some vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in a vector space V, we can consider the set of **all** of their linear combinations, This set is called the **span** of $\mathbf{v}_1, \ldots, \mathbf{v}_n$, denoted

 $\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}.$

In other words,

span{
$$\mathbf{v}_1,\ldots,\mathbf{v}_n$$
} = $\left\{\sum_{i=1}^n c_i \mathbf{v}_i : c_1,\ldots,c_n \in \mathbb{R}\right\}$

Remark: In fact, span { $\mathbf{v}_1, \ldots, \mathbf{v}_n$ } is a subspace of V. $\mathbf{v}_i = \mathbf{v}_i \in \mathbf{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ $\mathbf{v}_i \in \mathbf{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ $\mathbf{v}_i \in \mathbf{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$

Example 3. (1) Let
$$\mathbf{v}_1 = (1, 2, 3)^T$$
. What does $\operatorname{span}\{\mathbf{v}_1\}$ consist of in \mathbb{R}^3 ?
 $\mathbf{v}_1 = \{ \mathbf{c} \cdot \mathbf{v}_1 \mid \mathbf{c} \in \mathbb{R} \}$. *line*.
(2) What does $\operatorname{span}\{(0, 1, 0)^T, (0, 0, 1)^T\}$ consist of in \mathbb{R}^3 ?
 $\operatorname{span}\{(0, 1, 0)^T, (0, 0, 1)^T\}$ consist of in \mathbb{R}^3 ?
 $\operatorname{span}\{(0, 1, 0)^T, (0, 0, 1)^T\}$ a. $\operatorname{be}\mathbb{R}^2$
 $= \{ a(0, 1, 0)^T + b(0, 0, 1)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T + b(0, 0, 1)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T + b(0, 0, 1)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T + b(0, 0, 1)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in \mathbb{R} \}$
 $= \{ a(0, 1, 0)^T \mid a, b \in$

Example 5. Determine the span of $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$. span $\{1, \times, \times^2\} = \{a + b \times + c \times^2 \mid a, b, c \in \mathbb{R}\}$. $= P^{(2)}$ $P^{(n)}(psly, of degree \leq n) = span \{1, \times, \dots, \times^n\}$.

(i.e. $\mathbf{v}_1 \neq c\mathbf{v}_2$ for any scalar c), then span{ $\mathbf{v}_1, \mathbf{v}_2$ } defines a *plane*.

MATH 4242-Week 4-2

Example 6. The span of the matrices $\begin{pmatrix} A_1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} A_2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} A_3 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} A_3 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} A_4 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$ is $M_{2\times 2}(\mathbb{R})$. span {A, Au } = { a A, + b A+ cA+ dAu a, b s, deire = $\int \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{R}$ $= M_{2\times 2} (IR).$ Note that span{ $(1,0,0)^T$, $(0,1,0)^T$, $(0,0,1)^T$ } = \mathbb{R}^3 . Example 7. Let $\mathbf{v}_1 = (1, 0, 0)^T$, $\mathbf{v}_2 = (0, 1, 1)^T$, $\mathbf{v}_3 = (1, 0, 1)^T$. Show span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3$. (2) span $\{V_1, V_2, V_3\} \ge IR^3$ Take any verter (x, y, Z) TeIR, to check if (x, y, z) 3 l. combination of V1, V2, V3 $\frac{1}{1} s_{2} \left(\frac{x}{1} \right) = a v_{1} + b v_{2} + c v_{3},$ Find a. b. C. $\begin{pmatrix} X \\ 1 \\ z \end{pmatrix} = \begin{bmatrix} V_1 & V_2 & V_3 \\ A & J \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ $= \begin{bmatrix} I & 0 & I \\ 0 & I & 0 \\ 0 & J & I \end{bmatrix} \begin{pmatrix} a \\ b \\ c \end{bmatrix}$ If A B invertible, then $\binom{9}{2} = A^{\dagger}\binom{\times}{2}$. det A = 1 =0 So A R mertille This mplies (?) really exists, and thus (x, y, z) 7 3 ~ 2, combination of v, v 2 v, MATH 4242-Week 4-2

Poll Question 1: With the usual matrix addition and scalar multiplication $\mathsf{M}_{4\times 5}(\mathbb{R}) := \{A : A \text{ is } 4 \times 5 \text{ matrix}\}$

is a vector space.

 $\begin{array}{c} A \end{array} Yes \\ B \end{array} No$

Poll Question 2: With the usual matrix addition and scalar multiplication $M_{2\times 2}(\mathbb{R}) := \{A : A \text{ is } 2 \times 2 \text{ matrix with the form } A = \begin{pmatrix} 1 & a \\ b & 1 \end{pmatrix}\}$ is a vector space.

 $\begin{array}{c} A) \text{ Yes} \\ B) \text{ No} \end{array}$

* You should be able to see the pop up Zoom question. Answer the question by clicking the corresponding answer and then submit.

Caution: after clicking submit, you will not be able to resubmit your answer!