
Lecture 10: Quick review from previous lecture

• Definition: A vector space is a set V equipped with two operations:

(1) (Addition) If v,w 2 V , then v +w 2 V .

(2) (Scalar Multiplication) Multiplying a vector v 2 V by a scalar c 2 R
produces a vector cv 2 V .

For all u,v,w 2 V and all scalars c, d 2 R:

—————————————————————————————————

Today we will discuss

• Sec. 2.2 Subspace and Sec. 2.3 Span and Linear Independence.

- Lecture will be recorded -

—————————————————————————————————
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2.2 Subspaces

Definition: If W ⇢ V (that is, W is a “subset” of V ) and W is a vector space

under the same addition and scalar multiplication defined on a vector space V ,

then W is called a subspace of V .

X “Subspaces” are vector spaces that are embedded in larger vector spaces.

If we want to check if W ⇢ V is a subspace of V , it is enough to check the

following 3 conditions:

1. W must contain zero element of V

2. If v and w in W , then v +w 2 W .

3. If v 2 W and c 2 R, then cv 2 W .

Example 1:

(1) W = {0} is the trivial subspace of the vector space Rn
.

(2) S = {(x, y, 0)T} is a subspace of the vector space R3
.
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Example 2:

(1) S = {(x, y, 1)T} is NOT a subspace of the vector space R3
.

(2) Is S = {x � 0, y � 0, z = 0} a subspaces of R3
?

(3) Another interesting example is the space of solutions to a linear homogeneous

di↵erential equation on [a, b], for example,

S = {u 2 F([a, b]) : u is the solution to u00(x) + 9u(x) = 0}.

Is S a subspace of F([a, b])? Recall F([a, b]) is the collection of all functions

f defined on an interval [a, b]

Remark: 0 is essential for Example 2 (3) above.
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Recall: We denote the set of all m⇥ n matrices with entries from R by

Mm⇥n(R) := {A : A is m⇥ n matrix} (Recall that it is a vector space)

Example 3: The set of all 3 ⇥ 3 upper triangular matrix is a subspace of

M3⇥3(R).
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2.3 Span and Linear Independence

Definition: Suppose v1, . . . ,vn are vectors in a vector space V . If we take any

scalars c1, . . . , cn, we can form a new vector in V as follows:

c1v1 + · · · + cnvn =

nX

i=1

civi

An expression of this kind is known as a linear combination of v1, . . . ,vn.

Example 1. If we have vectors v1 = (1, 2)T , v2 = (�1, 0)T and v3 = (2,�1)
T
in

R2
, we can form the linear combination

2v1 � v2 + 3v3 = 2(1, 2)T � (�1, 0)T + 3(2,�1)
T
= (9, 1)T

Example 2. We observe that 0v = 0 for each v 2 V . Thus 0 vector is a linear

combination of any nonempty subset of V .

Definition: If we fix some vectors v1, . . . ,vn in a vector space V , we can

consider the set of all of their linear combinations, This set is called the span of

v1, . . . ,vn, denoted

span{v1, . . . ,vn}.
In other words,

span{v1, . . . ,vn} =

(
nX

i=1

civi : c1, . . . , cn 2 R
)

Remark: In fact, span{v1, . . . ,vn} is a subspace of V .
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Example 3. (1) Let v1 = (1, 2, 3)T . What does span{v1} consist of in R3
?

(2) What does span{(0, 1, 0)T , (0, 0, 1)T} consist of in R3
?

Example 4. If v1 = cv2 in R3
, then what is span{v1,v2}?

Remark:

• If v1 6= 0 in R3
, then span{v1} is the line {cv1 : c 2 R}.

• If v1 and v2 are two non-zero vectors in R3
that are not parallel to each other

(i.e. v1 6= cv2 for any scalar c), then span{v1,v2} defines a plane.

Example 5. Determine the span of f1(x) = 1, f2(x) = x, f3(x) = x2.
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Example 6. The span of the matrices

✓
1 0

0 0

◆
,

✓
0 1

0 0

◆
,

✓
0 0

1 0

◆
,

✓
0 0

0 1

◆

is M2⇥2(R).

Note that span{(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T} = R3
.

Example 7. Let v1 = (1, 0, 0)T ,v2 = (0, 1, 1)T ,v3 = (1, 0, 1)T .
Show span{v1,v2,v3} = R3

.
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Poll Question 1: With the usual matrix addition and scalar multiplication

M4⇥5(R) := {A : A is 4⇥ 5 matrix}

is a vector space.

A) Yes
B) No

Poll Question 2: With the usual matrix addition and scalar multiplication

M2⇥2(R) := {A : A is 2⇥ 2 matrix with the form A =

✓
1 a
b 1

◆
}

is a vector space.

A) Yes
B) No

* You should be able to see the pop up Zoom question. Answer the question by

clicking the corresponding answer and then submit.

Caution: after clicking submit, you will not be able to resubmit your answer!
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