Lecture 11: Quick review from previous lecture

- To check if $W \subset V$ is a subspace of V, it is enough to check the following 3 conditions:
 - 1. W must contain zero element of V,
 - 2. If \mathbf{v} and \mathbf{w} in W, then $\mathbf{v} + \mathbf{w} \in W$,
 - 3. If $\mathbf{v} \in W$ and $c \in \mathbb{R}$, then $c\mathbf{v} \in W$.
- A linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is

$$c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$$

• We define the set of collecting all possible linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_n$ by

Today we will discuss

• the linear independent (dependent).

- Lecture will be recorded -

Hw is due Tuday 6pm.

§ Linear Independence and Dependence

Definition: If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are vectors in a vector space V, we say they are **linearly dependent** if there exist scalars c_1, \ldots, c_n , not all of which are zero, so that

$$c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n=\mathbf{0}.$$

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are not linearly dependent, we say they are **linearly independent**.

In other words, $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are **linearly independent** if the *only* linear combination $\sum_{i=1}^n c_i \mathbf{v}_i$ that is equal to **0** is when all the c_i 's are equal to **0**.

Example 8.
(1)
$$(7, 14)^{T} = 7(1, 2)^{T}$$
. Thus $(1, 2)^{T}, (7, 14)^{T}$ are linearly dependent.
 $I(7, 14)^{T} = 7(1, 2)^{T}$. Thus $(1, 2)^{T}, (7, 14)^{T}$ are linearly dependent.
 $I(7, 14)^{T} = 7(1, 2)^{T} = (0, 0)^{T}$
 $G_{1} = (1, C_{2} = -7)$
(2) $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ are linearly independent. Why?
 $\mathbf{v}_{2} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}, \mathbf{v}_{2} =$

Example 9. Determine if $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 5 \\ 6 \end{pmatrix}$ are linearly independent or not? Set $a v_1 + bv_3 + cv_3 = 0$. Find a, b, c. $\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ a \end{bmatrix}$ $\begin{bmatrix} -1 & 3 & 5 & 0 \\ 0 & 3 & 6 & 0 \end{bmatrix} \xrightarrow{(2+1)} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 6 & 0 \\ 0 & 5 & 6 & 0 \end{bmatrix}$ 3-3, $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 3 & 6 & 0 \\ 0 & 3 & 6 & 0 \end{bmatrix}$ rank A = Z : Q 2 Free variable : C. $3b+6c=0 \implies b=-2c$ a = - C $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} C, \forall C \in \mathbb{R}.$ We can then conclude that we have [V, . V, V] as I dep since we Fact 1: Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in \mathbb{R}^n and let $A = [\mathbf{v}_1, \ldots, \mathbf{v}_k]$: (1) $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly **dependent** if and only if there is a nonzero solution (2) $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly **independent** if and only if the only solution to the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ is the trivial one, $\mathbf{x} = \mathbf{0}$. (Ex \mathbf{b} , (2)) (3) A vector $\mathbf{b} \in \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ if and only if $A\mathbf{x} = \mathbf{b}$ is compatible (i.e., has at least one solution). $b = C_1 V_1 + \dots + C_k V_k$. (has Solution(s))

> $A = \begin{bmatrix} V_1 & \cdots & V_k \end{bmatrix} \begin{bmatrix} C_1 \\ \vdots \\ C_k \end{bmatrix} = C_1 V_1 + \cdots + C_k V_k$ Spring 2021

MATH 4242-Week 4-3

Q: Suppose we take any four vectors in \mathbb{R}^3 ; call them \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 and \mathbf{v}_4 . Can they be linearly independent?

Example 10. For instance, we take the 4 vectors

$$\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \quad \mathbf{v}_{2} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}, \quad \mathbf{v}_{3} = \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}, \quad \mathbf{v}_{4} = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}.$$
Set up $X, V_{1} + X_{2}, V_{3} + X_{3}, V_{3} + X_{4}, V_{4} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}.$

$$A = \begin{bmatrix} V_{1} & V_{2} & V_{3} & V_{4} \end{bmatrix}, \quad \begin{bmatrix} A \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix} \\\begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 0 & -4 & 2 \\ -1 & 4 & 6 & 3 \end{bmatrix}, \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 - 20 \\ 3 + 0 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 1/4 \\ 0 & -6 & -4/4 \\ 0 & 7 & 7/7 \end{bmatrix}, \quad \begin{bmatrix} 3 + \frac{2}{4} \\ 0 \\ -6 & -6/4 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 1/4 \\ 0 \\ 0 \\ -6 & -6/4 \\ 0 & 0 & 0 \end{bmatrix},$$

$$Q = xavt A = z \\ tree van ables \cdot f(x, x_{4}) \\ (2 A_{2} + 6X + 6X_{4} = 0), \quad X_{2} = -X_{3} - X_{4}.$$

$$(3 A_{2} + 6X + 6X_{4} = 0), \quad X_{2} = -X_{3} - X_{4}.$$

$$(5 A_{2} + 6X + 6X_{4} = 0), \quad X_{2} = -X_{3} - X_{4}.$$

$$(5 A_{2} + 6X + 6X_{4} = 0), \quad X_{2} = -X_{3} - X_{4}.$$

$$(5 A_{2} + 6X + 6X_{4} = 0), \quad X_{2} = -X_{3} - X_{4}.$$

$$(5 A_{2} + 6X + 6X_{4} = 0), \quad X_{3} = -X_{3} - X_{4}.$$

$$(5 A_{2} + 6X + 6X_{4} = 0), \quad X_{4} = -X_{4} - X_{4}.$$

$$(5 A_{4} + 3X_{4} + X_{3} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{3} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{3} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{3} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{4} = 0).$$

$$(7 A_{1} + 3X_{4} + X_{5} + 4X_{5} + 4X_{5} = 0).$$

$$(7 A_{1} + 3X_{5} + X_{5} + 4X_{5} + 4X_{5} = 0).$$

$$(7 A_{1} + 3X_{5} + X_{5} + 4X_{5} + 4X_{5} + 4X_$$

Fact 2: If k > n, then any set of k vectors in \mathbb{R}^n is linearly dependent.

Example 11. Determine whether

{
$$x^3 + 2x^2$$
, $-x^2 + 3x + 1$, $x^3 - x^2 + 2x - 1$ }

in $\mathcal{P}^{(3)}$ are linearly independent or linearly dependent. $A(x^3+zx^2) + b(-x^2+3x+1) + c(x^3-x^2+2x-1)=0$ Find a, b, c. $(a + c) \times^{3} + (2a - b - c) \times^{2} + (3b + 2c) \times + (b - c) = 0$ $\begin{array}{c} a + c = 0 \\ \begin{cases} 2a - b - c = 0 \\ 3b + 3c = 0 \\ \end{cases} \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & -1 \\ 0 & 3 & z \\ 0 & 1 & -1 \\ \end{pmatrix} \begin{bmatrix} a \\ b \\ c \\ 0 \\ 0 \\ \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{vmatrix}$ $\begin{array}{c} & & \\ & &$ $\implies \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} o \\ o \\ o \end{pmatrix}.$ Then they are l. melep. \neq

Remark: It can be shown that $\{1, x, \ldots, x^n\}$ are linearly independent in $\mathcal{P}^{(n)}$.

Fact 2: Let $k \leq n$. A set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in \mathbb{R}^n is **linearly independent** if and only if the rank of $A = [\mathbf{v}_1, \ldots, \mathbf{v}_k]$ is equal to k.

To be continued !

Fact 3: If \mathbf{v}_n can be written as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}$, then $\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_{n-1},\mathbf{v}_n\}=\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_{n-1}\}.$

*See also Example 4: If $\mathbf{v}_1 = c\mathbf{v}_2$, then span $\{\mathbf{v}_1, \mathbf{v}_2\} = \text{span}\{\mathbf{v}_1\}$.

Example 12. Determine whether

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

in $M_{2\times 2}(\mathbb{R})$ are linearly independent or linearly dependent.
$$a A + b B + c C = O_{2\times 2} \quad \text{Find} \quad a.b.C.$$
$$A \begin{pmatrix} I & I \\ 0 & I \end{pmatrix} + b \begin{pmatrix} I & 0 \\ I & I \end{pmatrix} + c \begin{pmatrix} I & 2 \\ I & I \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$
$$\begin{cases} A + b + c = 0 \\ b + c = 0 \\ b + c = 0 \\ a + b + c = 0 \end{cases} \qquad (I \quad I \quad I) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & I \quad I \\ I & I \quad I \end{pmatrix} \begin{bmatrix} A \\ b \\ c \\ 0 \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$MATH 4242 Week \frac{A}{32} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad 6 \qquad \text{Spin 2021}$$