Lecture 11: Quick review from previous lecture

- To check if $W \subset V$ is a subspace of V, it is enough to check the following 3 conditions:

1. W must contain zero element of V,
2. If \mathbf{v} and \mathbf{w} in W, then $\mathbf{v}+\mathbf{w} \in W$,
3. If $\mathbf{v} \in W$ and $c \in \mathbb{R}$, then $c \mathbf{v} \in W$.

- A linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}
$$

- We define the set of collecting all possible linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ by

Today we will discuss

- the linear independent (dependent).
- Lecture will be recorded -

HW is due Today 6 pm .
§ Linear Independence and Dependence
Definition: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in a vector space V, we say they are linearly dependent if there exist scalars c_{1}, \ldots, c_{n}, not all of which are zero, so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are not linearly dependent, we say they are linearly independent.

In other words, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent if the only linear combination $\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}$ that is equal to $\mathbf{0}$ is when all the c_{i} 's are equal to 0 .

Example 8.

(1) $\underline{(7,14)^{T}=7(1,2)^{T}}$. Thus $(1,2)^{T},(7,14)^{T}$ are linearly dependent.

$$
\begin{aligned}
& \left.1(7,14)^{\top}-7 \frac{(1,2}{v_{2}}\right)^{\top}=(0,0)^{\top} \\
& c_{1}=1, c_{2}=-7 .
\end{aligned}
$$

$$
\overbrace{\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
$$

(2) $\mathbf{v}_{1}=\binom{1}{2}, \mathbf{v}_{2}=\binom{-2}{4}$ are linearly independent. Why?
$\left.\begin{array}{c}v_{2} \\ (-1 \\ 4\end{array}\right)$ Set up $\frac{a v_{1}+b v_{2}=\binom{0}{0}}{(1}$. Find a, b.
Set up $\frac{a v_{1}+b v_{2}=\binom{0}{0}}{a\binom{1}{2}+b\binom{-2}{4}=\binom{0}{0} .}$

$$
\left\{\begin{array}{l}
a-2 b=0 \\
2 a+4 b=0
\end{array}\right.
$$

homogeneous l. system. $\left\{v_{1}, v_{2}\right)$
are not
parallel. $\left(\begin{array}{cc|c}1 & -2 & 0 \\ 2 & 4 & 0\end{array}\right) \xrightarrow{(2)-2(1)}\left(\begin{array}{cc|c}1 & -2 & 0 \\ 0 & 8 & 0\end{array}\right)$
Then (2) $8 b=0, b=0$
(1) $a-2 b=0, \quad a=0$.

MATH 4242-Week us.30 $\binom{a}{b}=\binom{0}{0}$. By definition, $\left\{v_{1}, v_{2}\right\} l$ incleppo21

Example 9. Determine if $\mathbf{v}_{1}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}0 \\ 3 \\ 3\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}1 \\ 5 \\ 6\end{array}\right)$ are linearly independent or not?

$$
\begin{aligned}
& \text { Set } a_{A} v_{1}+b v_{2}+c v_{3}=0 \text {. Find } a, b, c . \\
& {\left[\begin{array}{ccc}
v_{1} & v_{2} & v_{3}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .} \\
& {\left[\begin{array}{cccc|c}
1 & 0 & 1 & 0 \\
-1 & 3 & 5 & 0 \\
0 & 3 & 6 & 0
\end{array}\right] \xrightarrow{(2)+(1)}\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 3 & 6 & 0 \\
0 & 3 & 6 & 0
\end{array}\right] .} \\
& Q: \quad \operatorname{rank} A=2:\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 3 & 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Free variable: C.

$$
\text { 2) } 3 b+6 c=0 \Rightarrow b=-2 C
$$

$$
\text { (1) } a=-c \text {. }
$$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right) \quad c, \quad \forall c \in \mathbb{R}
$$

We can then conclude that We have $\left\{v_{1}, v_{2}, v_{3}\right\}$ are l, dep since we
Fact 1: Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} and let $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$: can choose $\mathbf{c} \neq \mathbf{0}$.
(1) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent if and only if there is a nonzero solution \mathbf{x} to the homogeneous linear system $A \mathbf{x}=\mathbf{0} .(\boldsymbol{z} \times \boldsymbol{S})$
(2) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent if and only if the only solution to the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ is the trivial one, $\mathrm{x}=0$. $(E \times \mathcal{F},(2))$
(3) A vector $\mathbf{b} \in \operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ if and only if $A \mathbf{x}=\mathbf{b}$ is compatible (i.e., has at least one solution). $b=c_{1} v_{1}+\ldots+c_{k} v_{k}$.

$$
A x=\left[\begin{array}{lll}
v_{1} & \cdots & v_{1 k}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right]=c_{1} v_{1}+\ldots+c_{k} v_{\text {Spring }}{ }^{2021}
$$

Q: Suppose we take any four vectors in \mathbb{R}^{3}; call them $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{v}_{4}. Can they be linearly independent?
Example 10. For instance, we take the 4 vectors

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
-4 \\
6
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right)
$$

Setup $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}+x_{4} v_{4}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Find x_{1}, \ldots, x_{4}

$$
\begin{aligned}
& A= {\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
A \\
x_{1} \\
\vdots \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
1 & 3 & 1 & 4 \\
2 & 0 & -4 & 2 \\
-1 & 4 & 6 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
& \begin{array}{ll}
(2)-2(1) \\
(2)
\end{array}\left[\begin{array}{ccc}
1 & 3 & 14 \\
0 & -6 & -6-6 \\
0 & 7 & 7
\end{array}\right] \xrightarrow{(3)+\frac{1}{6}(2)}\left[\begin{array}{ccc}
\frac{1}{0} & 1 & 4 \\
0 & -6 & -6-6 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$Q: \operatorname{rank} A: Z$
tree cunables: x_{3}, x_{4}

$$
\begin{aligned}
& \text { (2) } 6 x_{2}+6 x_{3}+6 x_{4}=0, \quad x_{2}=-x_{3}-x_{4} . \\
& \begin{aligned}
& \text { (1) } x_{1}+3 x_{2}+x_{3}+4 x_{4}=0 \\
& x_{1}=-3\left(-x_{3}-x_{4}\right)-x_{3}-4 x_{4} . \\
&=2 x_{3}-x_{4} . \\
&\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
2 x_{3}-x_{4} \\
-x_{5}-x_{4} \\
x_{3} \\
x_{3}
\end{array}\right), x_{3}, x_{4} \in \mathbb{R} \text { Then }\left[v_{\left.1, \ldots, v_{4}\right]}\right] \\
& \text { We can use the same logic to show general fact: are } l \text { dep }
\end{aligned}
\end{aligned}
$$ if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are k vectors in \mathbb{R}^{n}, then they must be linearly dependent if $\underset{k>\boldsymbol{r}}{ }$.

In other words, we have the following fact:
Fact 2: If $k>n$, then any set of k vectors in \mathbb{R}^{n} is linearly dependent.

Example 11. Determine whether

$$
\left\{x^{3}+2 x^{2},-x^{2}+3 x+1, x^{3}-x^{2}+2 x-1\right\}
$$

in $\mathcal{P}^{(3)}$ are linearly independent or linearly dependent.

$$
a\left(x^{3}+2 x^{2}\right)+b\left(-x^{2}+3 x+1\right)+c\left(x^{3}-x^{2}+2 x-1\right)=0
$$

Find a, b, c.

$$
\longrightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & -3 \\
0 & 0 & -7 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \quad, \quad \operatorname{rank} A=3
$$

$$
\Longrightarrow\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Then they are l indep. *
$n+1$ polynomials
Remark: It can be shown that $\left\{1, x, \ldots, x^{n}\right\}$ are linearly independent in $\mathcal{P}^{(n)}$.

$$
\begin{aligned}
& (\underbrace{a+c}_{0}) x^{3}+(\underbrace{2 a-b-c}_{0}) x^{2}+(\underset{0}{3 b} \underset{0}{3 a}+2 c) x+(b-c)=0 \\
& {\left[\begin{array}{l}
a+c=0 \\
2 a-b-c=0 \\
3 b+2 c=0 \\
b-c=0
\end{array} \quad\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & -1 \\
0 & 3 & 2 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right.}
\end{aligned}
$$

Fact 2: Let $k \leq n$. A set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} is linearly independent if and only if the rank of $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ is equal to k.

To be continued!

Fact 3: If \mathbf{v}_{n} can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}$, then

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_{n}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right\}
$$

*See also Example 4: If $\mathbf{v}_{1}=c \mathbf{v}_{2}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}\right\}$.

Example 12. Determine whether

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)
$$

in $M_{2 \times 2}(\mathbb{R})$ ar linearly independent or linearly dependent. $a A+b B+c C=O_{2 \times 2}$. Ind a, b, c.

$$
\begin{aligned}
& a\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)+c\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) . \\
& \left\{\begin{array}{l}
a+b+c=0 \\
a+2 c=0 \\
b+c=0 \\
a+b+c=0
\end{array}\right.
\end{aligned} \Rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

MATH 4242-Week $\left(\begin{array}{c}a \\ b \\ -3\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.

