Lecture 12: Quick review from previous lecture

• If \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) are vectors in a vector space \(V \), we say they are **linearly dependent** if there exist scalars \(c_1, \ldots, c_n \), not all of which are zero, so that

\[
c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n = \mathbf{0}.
\]

If all \(c_i \) can only be zero, then we call \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) are **linearly independent**.

Today we will discuss

• Sec. 2.4 Basis and Dimension.

- Lecture will be recorded -
Fact 2: Let \(k \leq n \). A set of vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) in \(\mathbb{R}^n \) is linearly independent if and only if the rank of \(A = [\mathbf{v}_1, \ldots, \mathbf{v}_k] \) is equal to \(k \).

\[
(\Leftarrow) \quad \text{Set up } c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{u}_k = 0. \quad \text{Show } c_1 = \cdots = c_k = 0.
\]

Since \(\text{rank}(A) = k \), we have

\[
A \xrightarrow{\text{row ops.}} U = \begin{bmatrix} a_1 & \cdots & a_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}_{n \times k} = \begin{bmatrix} B \\ 0 \end{bmatrix}_{n \times k},
\]

where \(B = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix} \) is indeed nonsingular.

\[
\Rightarrow \quad c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{u}_k = 0 \Rightarrow A \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow B \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}
\]

\[
(\Rightarrow) \quad \text{skip}.
\]

\[
\text{Since } B \text{ is nonsingular, } c_1 = \cdots = c_k = 0 \quad \text{since } B \text{ is nonsingular.}
\]

Fact 3: If \(\mathbf{v}_n \) can be written as a linear combination of \(\mathbf{v}_1, \ldots, \mathbf{v}_{n-1} \), then

\[
\text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n\} = \text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}\}.
\]

*See also Example 4: If \(\mathbf{v}_1 = c \mathbf{v}_2 \), then \(\text{span}\{\mathbf{v}_1, \mathbf{v}_2\} = \text{span}\{\mathbf{v}_1\} \).

It's clear to see \(\text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \) (A \supseteq B: A contains B)

we only need to show \(\text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \supseteq \text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}\} \).

For any \(\mathbf{w} \in \text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \), we can express \(\mathbf{w} \) as a linear combination of \(\mathbf{v}_1, \ldots, \mathbf{v}_n \), that is,

\[
\mathbf{w} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n.
\]

Since \(\mathbf{u}_n \) is a linear combination of \(\mathbf{v}_1, \ldots, \mathbf{v}_{n-1} \), we have

\[
\mathbf{u}_n = c_1 \mathbf{v}_1 + \cdots + c_{n-1} \mathbf{v}_{n-1} + c_n (a_1 \mathbf{v}_1 + \cdots + a_{n-1} \mathbf{v}_{n-1})
\]

\[
= (c_1 + a_1 c_n) \mathbf{v}_1 + \cdots + (c_{n-1} + a_{n-1} c_n) \mathbf{v}_{n-1}.
\]

Then \(\text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}\} = \text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}\} \).

\(\checkmark \) \(\mathbf{v}_n \) is redundant in view of \(\text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}\} \).
2.4 Basis and Dimension

Definition:

(1) If $V = \text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, we say that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ span V.

(2) If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ span V and are linearly independent, we say that they form a basis of a vector space V.

*So a basis for a vector space V is a linearly independent set of vectors that span V.

Example 1.

(1) Check $\mathbf{e}_1 = (1,0,0)^T$, $\mathbf{e}_2 = (0,1,0)^T$, $\mathbf{e}_3 = (0,0,1)^T$ are linearly independent.

\[
\begin{bmatrix}
\mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\Rightarrow a_1 = a_2 = a_3 = 0.
\]

(2) We have known that $\text{span}\{(1,0,0)^T, (0,1,0)^T, (0,0,1)^T\} = \mathbb{R}^3$. Thus, $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis of \mathbb{R}^3.

In general, the “standard basis” of \mathbb{R}^n consists of the n vectors:

\[
\mathbf{e}_1 =
\begin{pmatrix}
1 \\
0 \\
0 \\
\vdots \\
0
\end{pmatrix},
\mathbf{e}_2 =
\begin{pmatrix}
0 \\
1 \\
0 \\
\vdots \\
0
\end{pmatrix}, \ldots,
\mathbf{e}_n =
\begin{pmatrix}
0 \\
0 \\
0 \\
\vdots \\
1
\end{pmatrix}
\]

Here $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are linearly independent and they span \mathbb{R}^n, since any vector $\mathbf{x} = (x_1, \ldots, x_n)^T$ can be written as $\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i$.

\[\text{MATH 4242-Week 5-1} \quad \text{Spring 2021} \quad 3\]
A natural question is: can there be a basis of \mathbb{R}^n with a different number of vectors (not n)?

The answer is “no”! In fact

Fact 1: Any basis of \mathbb{R}^n must have exactly n vectors.
In addition, a set of $v_1, \ldots, v_n \in \mathbb{R}^n$ is a basis of \mathbb{R}^n if and only if $A = [v_1, \ldots, v_n]$ is nonsingular ($\text{rank}(A) = n$).

[To see this] From Fact 2 in Section 2.3, we have

$$\Rightarrow \text{ } \{v_1, \ldots, v_n\} \text{ is a basis } \Rightarrow \{v_1, \ldots, v_n\} \text{ l. ind.}$$

$$\Leftarrow \text{ } A = [v_1, \ldots, v_n] \text{ has rank } n$$

$$\Leftrightarrow \text{ } A \text{ is nonsingular.}$$

Fact 2: Let $V = \text{span}\{v_1, \ldots, v_n\}$ be a spanning set of n linearly independent vectors, then any set of k elements w_1, \ldots, w_k in V with $k > n$ is linearly dependent.

Now, we consider the fact

Then we can show the general case.

Fact 3: If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.

[To see this]

Suppose V has a basis $\{v_1, \ldots, v_n\}$, and also it has another basis $\{w_1, \ldots, w_k\}$.

Show $k = n$.

1. V has a basis $\{v_1, \ldots, v_n\}$ ($V = \text{span}\{v_1, \ldots, v_n\}$), then $k \leq n$. $o/w \{w_1, \ldots, w_k\}$ are l. dep.

2. V has a basis $\{w_1, \ldots, w_k\}$, then $k \geq n$. o/w, $\{v_1, \ldots, v_n\}$ l. dep.

Then $k = n$. #
We have shown that if a vector space V has a basis with n elements, then any other basis must have n elements too.

Definition: In this case, we say that n is the **dimension** of V, and denote its dimension by $\dim V$.

Example 1: We have seen that \mathbb{R}^n has a basis with n elements (the standard basis e_1, \ldots, e_n). \mathbb{R}^n is n-dimensional, or $\dim \mathbb{R}^n = n$.

Example 2: Let $v_1 = (1, 2, 3)^T$ and $v_2 = (0, 1, 2)^T$, and $v_3 = (0, 4, 8)^T$.

1. What’s dimension and basis of $\text{span}\{v_1, v_2\}$?
 - $\text{span}\{v_1, v_2\}$ spans the whole space $\text{span}\{v_1, v_2\}$.
 - Then $\{v_1, v_2\}$ is a basis for $\text{span}\{v_1, v_2\}$.
 - $\dim (\text{span}\{v_1, v_2\}) = 2$.
2. What’s dimension and basis of $\text{span}\{v_2, v_3\}$?
 - $4v_2 = v_3$.
 - $\text{span}\{v_2, v_3\} = \text{span}\{v_3\}$.
 - A basis is $\{v_2\}$ (or $\{v_3\}$) $\dim (\text{span}\{v_2, v_3\}) = 1$.

Example 3: Find a basis and the dimension of the following spaces:

1. The vector space $P^{(n)}$ of polynomials of degree $\leq n$.
 - $P^{(n)} = \text{span}\{x^n, \ldots, x, 1\}$.
 - $\{x^n, x^{n-1}, \ldots, x, 1\}$ are l. ind.
 - Thus, $\{x^n, \ldots, x, 1\}$ is a basis for $P^{(n)}$.
 - $\dim P^{(n)} = n + 1$.
(2) The vector space $M_{2 \times 2}(\mathbb{R})$, the set of all 2×2 matrices.

$$M_{2 \times 2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

Then $\{A_1, \ldots, A_4\}$ spans $M_{2 \times 2}(\mathbb{R})$.

(3) The vector space $M_{m \times n}(\mathbb{R})$.

Similar as (2).

$$\dim \left(M_{m \times n}(\mathbb{R}) \right) = mn$$

Example 4: Determining if $v_1 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ form a basis for \mathbb{R}^3.

EX 3 (4): upper triangular matrix of 3×3, matrix

$$S = \left\{ \begin{bmatrix} a_1 & a_4 & a_5 \\ 0 & a_2 & a_6 \\ 0 & 0 & a_3 \end{bmatrix} \mid a_1, \ldots, a_6 \in \mathbb{R} \right\}$$

$$\dim S = 6$$