Lecture 12: Quick review from previous lecture

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in a vector space V, we say they are linearly dependent if there exist scalars c_{1}, \ldots, c_{n}, not all of which are zero, so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

If all c_{i} can only be zero, then we call $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

$$
\begin{aligned}
& \text { EX: } \left.\left.\quad \int(1,2),(1,4),(1,2), 4\right)\right\} \quad l \text { dep. } \\
& \xrightarrow{(1,2)}(2,3) \quad\{(1,2),(2,3)\} \text {. index. }
\end{aligned}
$$

Today we will discuss

- Sec. 2.4 Basis and Dimension.
- Lecture will be recorded -

Fact 2: Let $k \leq n$. A set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} is linearly independent if and only if the rank of $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ is equal to k.
(\Leftarrow) Set np $C_{1} v_{1}+\ldots+c_{k} v_{k}=0$. Show $c_{1}=\cdots=c_{k}=0$.
Since $\operatorname{rank}(A)=k$, we have

where $B=\left[\begin{array}{lll}a_{1} & & \nabla^{2} \\ 0 & \ddots & a_{k c}\end{array}\right]$ is indeed nonsingular.

$$
\begin{aligned}
C_{1} v_{1}+\ldots+c_{1} v_{k}=0 & \Longrightarrow A\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots
\end{array}\right] \\
& \Longrightarrow B\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right]
\end{aligned}
$$

Fact 3: If \mathbf{v}_{n} can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}$, then

$$
\underbrace{\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}, \Omega_{n}\right)}_{S_{n}}=\frac{\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right\}}{S_{n-1}}
$$

*See also Example 4: If $\mathbf{v}_{1}=c \mathbf{v}_{2}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}\right\}$.
It's clear to see $S_{n} \geq S_{n} .(" A \geq B ": A$ contains $B)$ We only need to show $S_{n} \subseteq S_{n-1}$
For any $\omega \in S_{n}$, we can express ω as a l. com bination of V_{1}, \ldots, U_{n}, that is,

$$
\begin{aligned}
w & =c_{1} v_{1}+\ldots+c_{n} v_{n} .2 \operatorname{sinc} v_{n} \text { is } l_{1} w_{n-1} . \\
& =c_{1} v_{1}+\ldots+c_{n-1} v_{n-1}+c_{n}\left(a_{1} v_{1}+\ldots+a_{n-1} v_{n-1}\right) \\
& =\left(c_{1}+a_{1} c_{n}\right) v_{1}+\ldots+\left(c_{n-1}+a_{n-1} c_{n}\right) v_{n-1} \\
& \in \operatorname{span}\left\{v_{1} \ldots, v_{n-1}\right\}=S_{n-1}
\end{aligned}
$$

Then $S_{\mathbf{v}_{n}}$ is redundant in view of $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right\}$.

2.4 Basis and Dimension

Definition:

(1) If $V=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, we say that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span V.
(2) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span V and are linearly independent, we say that they form a basis of a vector space V.
*So a basis for a vector space V is a linearly independent set of vectors that span V.

Example 1.

(1) Check $\mathbf{e}_{1}=(1,0,0)^{T}, \mathbf{e}_{2}=(0,1,0)^{T}, \mathbf{e}_{3}=(0,0,1)^{T}$ are linearly independent.

$$
\begin{aligned}
& a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text {. Find } a_{1}, a_{2}, a_{3} . \\
& {\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow a_{1}=a_{2}=a_{3}=0 .
\end{aligned}
$$

(2) We have known tha(1)pan $\left\{(1,0,0)^{T},(0,1,0)^{T},(0,0,1)^{T}\right\}=\mathbb{R}^{3}$. Thus, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis of \mathbb{R}^{3}.

In general, the "standard basis" of \mathbb{R}^{n} consists of the n vectors:

$$
\mathbf{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \ldots, \mathbf{e}_{n}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Here $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are linearly independent and they span \mathbb{R}^{n}, since any vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ can be written as $\mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}$.

A natural question is: can there be a basis of \mathbb{R}^{n} with a different number of vectors ($\operatorname{not} n$)?

The answer is "no"! In fact
Fact 1: Any basis of \mathbb{R}^{n} must have exactly n vectors.
In addition, a set of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ is a basis of \mathbb{R}^{n} if and only if $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is nonsingular $(\operatorname{rank}(A)=n)$.
[To see this] From Fact 2 in Section 2.3, we have
$\left.\Rightarrow)_{\left\{v_{1}, \ldots, v_{n}\right\}}\right\}$ a basis $\Rightarrow\left\{v_{1}, \ldots, v_{n} \mid l\right.$. indep.
Fact ${ }^{\text {Sec } 2.3}$
(\Leftarrow) grecise.
Now, we consider the fact $\Rightarrow A$ is nonsingular.
Fact 2: Let $V=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a spanning set of n linearly independent. vectors, then any set of k elements $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$ in V with $k>n$ is linearly dependent.

Then we can show the general case.
Fact 3: If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.
[To see this] Suppose V has a basis $\left\{v_{1}, \ldots, v_{n}\right\}$, and alp it has another basis $\left\{w_{1}, \ldots, w_{k}\right\}$.
Show $k=n$.
(1) V has a basis $\left\{v_{1}, \ldots, v_{n}\right\}\left(V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}\right)$ then $k \leq n \quad o / w\left|w_{1}, \ldots, w_{k}\right|$ are l.dep.
(3) V has a basis $\left[\omega, \ldots, w_{k} \mid\right.$, then $k \geq n .0 / w,\left\{v, \ldots, v_{n}\right\} l \underset{\text { Spring } 2021}{ }$ dep. MATH 4242-Weerffhen $k=n^{4} \not \approx$.

We have shown that if a vector space V has a basis with n elements, then any other basis must have n elements too.

Definition: In this case, we say that n is the dimension of V, and denote its dimension by $\operatorname{dim} V$.

Example 1: We have seen that \mathbb{R}^{n} has a basis with n elements (the standard basis $\left.\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right), \mathbb{R}^{n}$ is n-dimensional, or $\operatorname{dim} \mathbb{R}^{n}=n$.

Example 2: Let $\mathbf{v}_{1}=(1,2,3)^{T}$ and $\mathbf{v}_{2}=(0,1,2)^{T}$, and $\mathbf{v}_{3}=(0,4,8)^{T}$.
(1) What's dimension and basis of span $\left.\left\{\mathrm{v}_{1}\right),\left(\mathrm{v}_{2}\right)\right\}$? $\left\{v_{1}, v_{2}\right\} \xlongequal{\ell}$ index $\left\{v_{1}, v_{2}\right\}$ spans the whsle space spar $\left\{v_{1}, v_{2} \mid\right.$.
Then $\left\{v_{1}, v_{2}\right\}$ is a basis for $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. $\operatorname{dim}\left(\operatorname{spa}_{n}\left\{v_{1}, v_{2}\right\}\right)=2$.
(2) What's dimension and basis of $\operatorname{span}\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
$4 V_{2}=V_{3}$.
$\operatorname{span}\left\{v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{2}\right\}$.
A bass is $\left\{v_{2}\right\}$ (or $\left.\left\{v_{3}\right\}\right) \operatorname{dim}\left(\operatorname{span}\left\{v_{2}, v_{3}\right\}\right)=1$
Example 3: Find a basis and the dimension of the following spaces:
(1) The vector space $\mathcal{P}^{(n)}$ of polynomials of degree $\leq n$.
(1) $p^{(n)}=\operatorname{span}\left\{x^{n}, \ldots, x^{\prime}, 1\right\}$.
(2) $\left\{x^{n}, x^{n-1}, \ldots, x, 1\right\}$ are ℓ indep.

Thus, $\left\{x^{n}, \ldots, x^{\prime}, 1\right\}$ is a basis for $p^{(n)}$.
$\operatorname{dim} P^{(n)}=n+1$
(2) The vector space $M_{2 \times 2}(\mathbb{R})$, the set of all 2×2 matrices. $\operatorname{din}\left(M_{2 \times 2}\right)=4$

$$
\left.\begin{array}{rl}
M_{2 \times 2}(\mathbb{R}) & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \\
& =\left\{\left.a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \right\rvert\, a, b, c, d\right. \\
-A_{1},
\end{array}\right]
$$

Then ${ }^{(1)}\left\{A_{1} \ldots, A_{4}\right\}$ spans $M_{2 \times 2}(\mathbb{R})$.
(2) $\left(A_{1}, \ldots, A_{4}\right)$ are l index. since $a A_{1}+\ldots+d A_{4}=\binom{0}{0}$
$\Rightarrow a=b=c=d=0$. Thus, $\left\{A_{1}, \ldots, A_{4} \mid\right.$ is a basis.
(3) The vector space $M_{m \times n}(\mathbb{R})$.

Similar as (2).

$$
\operatorname{dim}\left(M_{m \times n}(\mathbb{R})\right)=m n
$$

Example 4: Determining if $\mathbf{v}_{1}=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ form a basis for \mathbb{R}^{3}.

EX 3(4): upper triangular matrix of 3×3, matrix

$$
\begin{aligned}
S= & \left\{\left.\left[\begin{array}{ccc}
a_{1} & a_{4} & a_{5} \\
0 & a_{2} & a_{6} \\
0 & 0 & a_{3}
\end{array}\right] \right\rvert\, a_{1}, \ldots, a_{6} \in \mathbb{R}\right\} . \\
& \operatorname{din} S=6
\end{aligned}
$$

