Lecture 12: Quick review from previous lecture

• If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are vectors in a vector space V, we say they are **linearly dependent** if there exist scalars c_1, \ldots, c_n , not all of which are zero, so that

$$c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n=\mathbf{0}.$$

If all c_i can only be zero, then we call $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are **linearly independent**.

 $\overline{EX} = \int_{(1,2)}^{(1,2)} (1,2) (2,4) L dep.$ (1,2) (1,2) (1,2) (2,4) L dep. (1,2) (2,3) L dep. (1,2) (2,3) L dep.

Today we will discuss

• Sec. 2.4 Basis and Dimension.

- Lecture will be recorded -

Fact 2: Let $k \leq n$. A set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in \mathbb{R}^n is **linearly independent** if and only if the rank of $A = [\mathbf{v}_1, \ldots, \mathbf{v}_k]$ is equal to k.

2.4 Basis and Dimension

Definition: (1) If $V = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, we say that $\mathbf{v}_1, \dots, \mathbf{v}_n$ span V. (2) If $\mathbf{v}_1, \dots, \mathbf{v}_n$ span V and are linearly independent, we say that they form a **basis** of a vector space V.

*So a basis for a vector space V is a linearly independent set of vectors that span V.

Example 1.

(1) Check
$$\mathbf{e}_1 = (1, 0, 0)^T$$
, $\mathbf{e}_2 = (0, 1, 0)^T$, $\mathbf{e}_3 = (0, 0, 1)^T$ are linearly independent.
 $\mathbf{a}_1 \mathbf{e}_1 + \mathbf{a}_2 \mathbf{e}_2 + \mathbf{a}_3 \mathbf{e}_3 = \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_1 \end{pmatrix}$, $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$.
 $\begin{bmatrix} \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix} = \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{pmatrix}$
 $\begin{bmatrix} \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix} = \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{pmatrix}$, $\mathbf{a}_1 = \mathbf{a}_2 = \mathbf{a}_3 = \mathbf{0}$.
(2) We have known that $\mathbf{e}_1 \mathbf{e}_1 \{(1, 0, 0)^T, (0, 1, 0)^T, (0, 0, 1)^T\} = \mathbb{R}^3$. Thus, $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$
is a basis of \mathbb{R}^3 .

IS a DASIS OF \mathbb{K}° .

A natural question is: can there be a basis of \mathbb{R}^n with a different number of vectors (not n)?

The answer is "no"! In fact

Fact 1: Any basis of \mathbb{R}^n must have exactly *n* vectors. In addition, a set of $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^n$ is a basis of \mathbb{R}^n if and only if $A = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$ is nonsingular (rank(A) = n).

[To see this] From Fact 2 in Section 2.3, we have

$$(\downarrow)_{V_1, \dots, V_n}$$
 $(\downarrow)_{T_s}$ a basis $(\downarrow)_{V_1, \dots, V_n}$ $(\downarrow)_{V_1, \dots,$

vectors, then any set of k elements $\mathbf{w}_1, \ldots, \mathbf{w}_n$ in V with k > n is linearly dependent.

Then we can show the general case.

Fact 3: If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.

[To see this] Suppose V has a basis
$$[V_1, \dots, V_n]$$
, and
also it has another basis $[W_1, \dots, W_k]$.
Show $k = n$.
(D) V has a basis $[V_1, \dots, V_n]$ ($V = spen \{V_1, \dots, V_n\}$) then
 $k \leq n$ olu $[W_1, \dots, W_k]$ as l . dep.
(3) V has a basis $[W_1, \dots, W_k]$ as l . dep.
 $k \geq n$. olw, $[V_1, \dots, V_n]$ l dep.
MATH 4242- Week then $k \geq n$. olw, $[V_1, \dots, V_n]$ l dep.
Spring 2021

We have shown that if a vector space V has a basis with n elements, then any other basis must have n elements too.

Definition: In this case, we say that n is the **dimension** of V, and denote its dimension by dim V.

Example 1: We have seen that \mathbb{R}^n has a basis with n elements (the standard basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$), \mathbb{R}^n is n-dimensional, or $\dim \mathbb{R}^n = n$.

Example 2: Let $\mathbf{v}_1 = (1, 2, 3)^T$ and $\mathbf{v}_2 = (0, 1, 2)^T$, and $\mathbf{v}_3 = (0, 4, 8)^T$. (1) What's dimension and basis of span $\{v_1, v_2\}$? $\{v_1, v_2\}$? (V, , V2) spans the whole space space (V, , V2) Then IV, V21 is a basis for span EU, V21 $\dim(\operatorname{span} \{v_1, v_2\}) = 2.$ (2) What's dimension and basis of span{ $\mathbf{v}_2, \mathbf{v}_3$ }? $4V_{2} = V_{3}$. $span \{V_2, V_3\} = span \{V_3\}$ A basis is $\{V_2\}(or \{V_3\}) \dim(span \{V_2, V_3\}) = 1$ **Example 3:** Find a basis and the dimension of the following spaces: (1) The vector space $\mathcal{P}^{(n)}$ of polynomials of degree $\leq n$. () p(n) = span { x", -- , x', 1 }. \Im {xⁿ, xⁿ⁻¹, ..., x, 1} are l. indep. Thus, {xⁿ, ..., x, 1} is a basis to $P^{(n)}$ $\dim P^{(m)} = n+1$

(2) The vector space
$$M_{3\times 2}(\mathbb{R})$$
, the set of all 2×2 matrices. $\dim(M_{2\times 2}) = 4$
 $M_{3\times 2}(1\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$
 $= \left\{ a \begin{bmatrix} r & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$
 $= \left\{ a \begin{bmatrix} r & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$
 $M_{3\times 2}(1\mathbb{R}) = \left\{ A_{3} \mid A_{4} \mid A_{5} \mid A_{4} \mid A_{5} \mid A_{4} \mid A_{5} \mid A_{5}$