
Lecture 12: Quick review from previous lecture

• If v1, . . . ,vn are vectors in a vector space V , we say they are linearly de-
pendent if there exist scalars c1, . . . , cn, not all of which are zero, so that

c1v1 + · · · + cnvn = 0.

If all ci can only be zero, then we call v1, . . . ,vn are linearly independent.

—————————————————————————————————

Today we will discuss

• Sec. 2.4 Basis and Dimension.

- Lecture will be recorded -

—————————————————————————————————
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Fact 2: Let k  n. A set of vectors v1, . . . ,vk in Rn
is linearly independent

if and only if the rank of A = [v1, . . . ,vk] is equal to k.

Fact 3: If vn can be written as a linear combination of v1, . . . ,vn�1, then

span{v1, . . . ,vn�1,vn} = span{v1, . . . ,vn�1}.

*See also Example 4: If v1 = cv2, then span{v1,v2} = span{v1}.

X vn is redundant in view of span{v1, . . . ,vn�1}.
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2.4 Basis and Dimension

Definition:

(1) If V = span{v1, . . . ,vn}, we say that v1, . . . ,vn span V .

(2) If v1, . . . ,vn span V and are linearly independent, we say that they form a

basis of a vector space V .

*So a basis for a vector space V is a linearly independent set of vectors that span

V .

Example 1.

(1) Check e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T are linearly independent.

(2) We have known that span{(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T} = R3
. Thus, {e1, e2, e3}

is a basis of R3
.

In general, the “standard basis” of Rn
consists of the n vectors:

e1 =

0
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, e2 =
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, . . . , en =

0

BBBBBBB@

0
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...

0

1

1

CCCCCCCA

.

Here e1, . . . , en are linearly independent and they span Rn
, since any vector

x = (x1, . . . , xn)T can be written as x =
Pn

i=1 xiei.
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A natural question is: can there be a basis of Rn
with a di↵erent number of

vectors (not n)?
The answer is “no”! In fact

Fact 1: Any basis of Rn
must have exactly n vectors.

In addition, a set of v1, . . . ,vn 2 Rn
is a basis ofRn

if and only ifA = [v1, . . . ,vn]

is nonsingular (rank(A) = n).

[To see this] From Fact 2 in Section 2.3, we have

Now, we consider the fact

Fact 2: Let V = span{v1, . . . ,vn} be a spanning set of n linearly independent

vectors, then any set of k elements w1, . . . ,wk in V with k > n is linearly

dependent.

Then we can show the general case.

Fact 3: If V is any vector space that has a basis with n vectors, then any other

basis must also have n vectors.

[To see this]
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We have shown that if a vector space V has a basis with n elements, then any

other basis must have n elements too.

Definition: In this case, we say that n is the dimension of V , and denote its

dimension by dimV .

Example 1: We have seen that Rn
has a basis with n elements (the standard

basis e1, . . . , en), Rn
is n-dimensional, or dimRn

= n.

Example 2: Let v1 = (1, 2, 3)T and v2 = (0, 1, 2)T , and v3 = (0, 4, 8)T .

(1) What’s dimension and basis of span{v1,v2}?

(2) What’s dimension and basis of span{v2,v3}?

Example 3: Find a basis and the dimension of the following spaces:

(1) The vector space P (n)
of polynomials of degree  n.
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(2) The vector space M2⇥2(R), the set of all 2⇥ 2 matrices.

(3) The vector space Mm⇥n(R).

Example 4: Determining if v1 =

0
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.
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