Lecture 13: Quick review from previous lecture , $\left\{v_{1}, \ldots, v_{n}\right\}$.

- A basis for a vector space V is a inearly independent set of vectors that (2)span $V . \quad\left(U=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}\right.$.
- \mathbb{R}^{n} has a basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\} . \operatorname{dim} \mathbb{R}^{n}=n$.
- If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.

Today we will discuss

- Sec. 2.4 Dimension and basis
- Sec. 2.5 The fundamental matrix subspaces

- Lecture will be recorded -

- Exam 1 will cover C. 1 and C.2, except 1.7, 2.5, 2.6.
- "Exam 1 instructions" have been posted on Canvas homepage (click Exam 1 Instructions). "Practice Exam" can be found there.
- Exam (2/24, Wed.) is closed book and everyone needs to open camera.
(1) span \mathbb{R}^{3}

Example 4: Determining if $\mathbf{v}_{1}=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)^{3}, \mathbf{v}_{2}=\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ form a
basis for \mathbb{R}^{3}. We knew dim $\mathbb{R}^{3}=3$. It's sufficient to check if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is ℓ. indep.
set $a v_{1}+b v_{2}+c v_{3}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Find a, b, c.
$\left[\begin{array}{ccc}v_{1} & A & v_{2}\end{array} v_{3}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ (homogeneous l. system)
If A is invertible, then $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=A^{-1}\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
To see if A is muertible,

$$
A=\left[\begin{array}{ccc}
0 & -1 & 0 \\
2 & 1 & 1 \\
4 & 0 & 0
\end{array}\right] \xrightarrow{(1)<-2)}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -1 & 0 \\
4 & 0 & 0
\end{array}\right] \xrightarrow{(2)-21}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -1 & 0 \\
0 & -2 & -2
\end{array}\right] \xrightarrow{(3)}-2(2)\left[\begin{array}{cc}
2 & 1 \\
0 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right] .
$$

$\operatorname{det} A=(-1)^{1}(2 \cdot(-1) \cdot(-2))=-4 \neq 0$. A is novinguleo muertible
Example 5: Check if $p_{1}(x)=2 x^{2}+4, p_{2}(x)=\overline{x^{2}-x}, p_{3}(x)=x^{2}$ form a basis for $\mathcal{P}^{(2)} . \operatorname{dim} p^{(2)}=3$.

$$
\begin{aligned}
& \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=A^{-1}\binom{0}{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& y y
\end{aligned}
$$

(Recall $\left\{x^{2}, x, 1\right\}$ is a basis for $p^{(2)}$). Set $a p_{1}+b p_{2}+c p_{3}=0$

$$
\begin{aligned}
& a\left(2 x^{2}+4\right)+b\left(x^{2}-x\right)+c\left(x^{2}\right)=0 . \\
& (2 a+b+c) x^{2}+(-b) x+\frac{4 a}{2 a}=0 . \\
& 0 \\
& {\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -1 & 0 \\
4 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

A"
$\operatorname{det} A=4 \neq 0$. Then $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=A^{-1}\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Which implies $\left\{p_{1}, p_{2}, p_{3} \mid\right.$ is a basis for for is $p_{\text {spring }}{ }^{3}$.

Remark: So far we have seen that $\left\{1, x, x^{2}\right\}$ and $\left\{2 x^{2}+4, x^{2}-x, x^{2}\right\}$ are basis for $\mathcal{P}^{(2)}$. View $q(x)=x^{2}+2 x+6$ as a vector $\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)$ in basis $\left\{x^{2}, x, 1\right\}$ a vector $\left(\begin{array}{l}a \\ b \\ b\end{array}\right)$ in New basis $\left\{p_{1}, p_{a}, p_{3}\right.$).
Question: How do we determine the coefficients of a quadratic polynomial in the ${ }^{2}$. basis $p_{1}(x)=2 x^{2}+4, p_{2}(x)=x^{2}-x, p_{3}(x)=x^{2}$?

For example,
Example 6: Consider $q(x)=x^{2}+2 x+6$. Determine a, b, c in $q=a p_{1}+b p_{2}+c p_{3}$.

$$
a p_{1}+b p_{2}+c p_{3}=q
$$

similar as above

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -1 & 0 \\
4 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right] .} \\
& {\left[A \left\lvert\, \begin{array}{l}
1 \\
2
\end{array}\right.\right] \xrightarrow{(3)-2(1)}\left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
0 & -1 & 0 & 2 \\
0 & -2 & -2 & 4
\end{array}\right] \xrightarrow{(3)-2}\left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
0 & -1 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right] .}
\end{aligned}
$$

(3) $C=0$
(2) $b=-2$
(1) $\quad a=3 / 2$.

Actually this expression is unique.

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
3 / 2 \\
-2 \\
0
\end{array}\right)
$$

represents the vector of q in this New bars $\left\{p_{1}, p_{2}, p_{3}\right\}$
Fact 4: The elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis of a vector space V if and only if every $\mathbf{x} \in V$ can be written uniquely as a linear combination of the basis elements:

Suppose $x=a_{1} v_{1}+\ldots+a_{n} v_{n}$.
${ }_{\text {MATH 4242-Week 5-2 }} 0=X-X=\left(c_{1}-a_{3}\right) v_{1}+\cdots+\left(c_{n}-a_{n}\right.$ print $_{1} v_{1021}$ Since $\left\{u_{1}, \ldots, u_{n}\right\}$ are l. indep, $\quad c_{k}-a_{k}=0,1 \leq k \leq n$

$$
c_{k}=a_{k}, 1 \leq k \leq n .7
$$

2.5 The Fundamental Matrix Subspaces
§ Kernel and Image

$$
A_{m \times n}=\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} .
$$

We can associate to a matrix $A=A_{m \times n}$ a subspace of \mathbb{R}^{n}, called the kernel or null space of A.
Definition: The kernel of A is the set of all solutions \mathbf{x} to the homogeneous equation $A \mathbf{x}=\mathbf{0}$. We denote the kernel of A by ger A :

$$
\operatorname{ker} A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

Fact 1: $\operatorname{ker} A$ is a subspace of \mathbb{R}^{n} :
[To see this:]
(1) $A \frac{0}{\mathbb{R}^{n}}=\frac{0}{\mathbb{R}^{m}}$. so $\frac{0}{\mathbb{R}^{n}} \in \operatorname{ker} A$
(2) For $x, y \in \operatorname{ker} A$, check $x+y \in \operatorname{ker} A$:

$$
\begin{aligned}
A(x+y) & =A x+A y \quad A x=0 \\
& =0+0 \quad A y=0 \\
& =0 \\
\Rightarrow x+y & \text { ger } A .
\end{aligned}
$$

(3) $c \in \mathbb{R}, x \in \operatorname{ker} A$. check $c x \in \operatorname{ker} A$:

$$
A(c x)=c A x=c \bar{O}=0 \text {. so } c x \in \operatorname{ker} A
$$

Let's observe that if \mathbf{x}_{1} and \mathbf{x}_{2} are two solutions to the equation $\mathbf{A x}=\mathbf{b}$, then what can we say about their difference, $\mathbf{x}_{1}-\mathbf{x}_{2}$?

$$
\begin{aligned}
& A x_{1}=b \\
& A x_{2}=b
\end{aligned}
$$

Then $A\left(x_{1}-x_{2}\right)=A x_{1}-A x_{2}=b-b=0$.

Fact 2: Suppose the linear system $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}^{\star}. Then \mathbf{x} is a solution to $A \mathbf{x}=\mathbf{b} \Longleftrightarrow \mathbf{x}=\mathbf{x}^{\star}+z$, where $z \in \operatorname{ker} A$.
[To see this:]
(三) We know both x^{*}, x are solutims of $A x=b$. Based on observation above,

$$
x-x^{*} \in \operatorname{ker} A
$$

Let $z=x-x^{*}$. Then $z \in \operatorname{ker} A$. So we get

$$
\frac{x=\frac{x^{*}}{f}+\frac{z}{\text { sol. to } A x=b}}{\text { ten } A}
$$

(\Leftarrow)

$$
\begin{aligned}
& A(x)=A\left(x^{*}+z\right) \\
&=A x^{*}+A z \quad A x^{*}=b \\
&=b \in \operatorname{zev} A \\
& \text { This gives } x \text { is a solution to } A x=b .
\end{aligned}
$$

Remark. In other words, any solution to $A \mathbf{x}=\mathbf{b}$ can be generated by starting with a particular solution \mathbf{x}^{*}, and adding to \mathbf{x}^{*} vectors in the kernel of A.

Example 1. Write the general solution to the following linear system in the form of $\mathbf{x}=\mathbf{x}^{\star}+z$, where $z \in \operatorname{ker} A$.

$$
\begin{aligned}
& \mathrm{f} \mathbf{x}=\mathbf{x}^{\star}+z \text {, where } z \in \operatorname{ker} A \cdot A \\
& \left(\begin{array}{lll}
1 & -1 & 0 \\
2 & 0 & -4 \\
2 & -1 & -2
\end{array}\right) \\
& \left(A \left\lvert\, \begin{array}{l}
-1 \\
-6 \\
b \\
c
\end{array}\right.\right)=\left(\begin{array}{l}
-1 \\
-6 \\
-4
\end{array}\right) \\
& \left(\begin{array}{ll}
(2)-2(1) \\
\hline
\end{array}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 2 & -4 & -4 \\
0 & 1 & -2 & -2
\end{array}\right) \xrightarrow{(3)-\frac{1}{2}(2)}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 2 & -4 & -4 \\
0 & 0 & 0 & 0
\end{array}\right) .\right.
\end{aligned}
$$

Free variable $=C$
(2) $2 b-4 c=-4 \Rightarrow b=2 c-2$.
(1) $a-b=-1 \Rightarrow a=-1+b$
all solutions ace $=2 c-3$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
2 c-3 \\
2 c-2 \\
c
\end{array}\right)=\left(\begin{array}{c}
2 \\
2 \\
1
\end{array}\right) c+\left(\begin{array}{c}
-3 \\
-2 \\
0
\end{array}\right) .
$$

Fact 3: If A is an $m \times n$ matrix, then the following conditions are equivalent:

1. $\operatorname{ker} A=\{\mathbf{0}\}$ (homogeneous system $A \mathbf{x}=\mathbf{0}$ has the unique solution $\mathbf{x}=\mathbf{0}$);
2. $\operatorname{rank}(A)=n$;
3. The linear system $A \mathbf{x}=\mathbf{b}$ has no free variables;
4. The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution for each $\mathbf{b} \in \operatorname{img} A$.
