Lecture 13: Quick review from previous lecture

AR

e A basis for a vector space V' is a Tinearly independent set of vectors that
Chpan V. (7= spanfv, ],

e R” has a basis {eq,...,e,}. dimR" = n.

e If V is any vector space that has a basis with n vectors, then any other basis
must also have n vectors.

Today we will discuss
e Sec. 2.4 Dimension and basis

e Sec. 2.5 The fundamental matrix subspaces

- Lecture will be recorded -

e Exam 1 will cover C.1 and C.2, except 1.7, 2.5, 2.6.

e “Exam 1 instructions” have been posted on Canvas homepage
(click Exam 1 Instructions). “Practice Exam” can be found there.

e Eixam (2/24, Wed.) is closed book and everyone needs to open camera.
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Example 5: Check if pi(z) =@22* +@& po(x) = :z:2 =z, p3(z) = x* form a basis

for P2, dan f‘2,= > ( )"A H (/

(&c«“ fx, 2] is abass Ao ’D‘”). Set  ap .+ bpo + <pr =0
a( 2%+ 4) + b( x*-x) + c(x*) =0
(20\+b+c)><+ (-b) X + 4a =0
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Remark So far we have seen that {1, z, z*} and {22% + 4, 2% — x, 2} are basis
for PO, [fiey g0 = X+34+6 as & veaw ,’) m basis {1
é

r ) ?‘I
Question: How do we determine the coefficients of a quadratlc polynomial 1);1 the ’) :
basis py(z) = 20% + 4, po() = 22 — 7, pa(x) — 227
For example,

Example 6: Consider ¢(z) = 2°+2x+6. Determine a, b, ¢ in ¢ = ap; +bps+cps.

0\,+bF+Cf3=f
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represents tha vectwr of ¢

Actually this expression is unique. wm this New boss §l7’ , Ps, ]73}

'Fact 4: The clements vi,...,V, form a basis of a vector space V' if and only 4
if every x € V can be written @niquely as a linear combination of the basis

e Zf x:clV1+---+§nvn.
(—"—)) X= GV, £.cc + CuVn ‘

{MFI')DSR X = & V, +.. <4 ay\ Va .
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2.5 The Fundamental Matrix Subspaces

AMM : IR" —» ’R

We can associate to a matrix A = A,,x, 2 Subspace of R”, called the kernel or

§ Kernel and Image

null space of A. P ’AL-? R "

'Definition: The kernel of A is the set of all solutions x to the homogeneous\
equation @x=10. We denote the kernel of A by ker A:

ker A ={x e R": Ax = 0}.

‘Fact 1: ker A is a subspace of R":

[To see_this:]

AD = 0 . sSo O €kerA
TR" —”.zm -
& . X, 4 € ke A chedk x +4 cker A -

ALX‘“Q): A““"Aj

= O +0
— 0.

M“

=) K*dék@:A,
@ CGP/ X & k@{A check c X C—keYA" S
Alcex) = cAx = c( = O.Qckeva,

Let’s observe that if x; and x5 are two solutions to the equation @x='b, then

what can we say about their difference, x; — x57

Ax = b
Ai, =b
Thow  A( X, - X)) = A% -A% = b-b=0

X, — % € ker A
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Fact 2: Suppose the linear system Ax = b has a solution x*. Then
X 1s a solution to Ax = b <= x = x* + 2, where z € ker A.

[To see this:]
=)) Wa knw bsth X* , x aw solating af S b

Based o sbervativ above

let 2= x-—X". Then % ckerA. {»u.zggt

(=) A(x) = AC x* + 2)

- A’ X* + A'? Ax*;b
= b -+ 0 z %ékOVA

Remark. In other words, any solution to Ax = b can be generated by starting
with a particular solution x*, and adding to x* ve(ﬁrs.i.n\the kernel of A.
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Example 1. Write the general solution to the following linear system in the form
of x = X"+ 2, WherezekerA

— A
1—10 —1
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—1 —9 —4
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Free wvarmble = C

G 2b-G c= -4 = b= 2¢-2
O a-b=-1 =2 a=-1tb
= 2c¢-3

a" so lutuns [/ S¥ 4

G 2¢C -3 2 -2
(b ) = 2C-2 = 2l1¢c + /[ -3
c c | o
—
kev Al ’(*, é soluTim
w AX;),.

‘Fact 3: If Aisanm x n matrix, then the following conditions are equivalent: |
1. ker A = {0} (homogeneous system Ax = 0 has the unique solution x = 0);
2. rank(A) = n;

3. The linear system Ax = b has no free variables;

4. The linear system Ax = b has a unique solution for each b € img A.
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