Lecture 13: Quick review from previous lecture $\{V_1, \dots, V_n\}$. • A basis for a vector space V is a finearly independent set of vectors that $(V = Span \{V_1, \dots, V_n\})$.

- \mathbb{R}^n has a basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$. dim $\mathbb{R}^n = n$.
- If V is any vector space that has a basis with n vectors, then any other basis must also have n vectors.

Today we will discuss

- Sec. 2.4 Dimension and basis
- Sec. 2.5 The fundamental matrix subspaces

- Lecture will be recorded -

- Exam 1 will cover C.1 and C.2, except 1.7, 2.5, 2.6.
- "Exam 1 instructions" have been posted on Canvas homepage (click <u>Exam 1 Instructions</u>). "Practice Exam" can be found there.
- Exam (2/24, Wed.) is **closed book** and everyone needs to **open camera**.

1) span R³ Example 4: Determining if $\mathbf{v}_1 = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ form a basis for \mathbb{R}^3 . We knew dim $\mathbb{R}^3 = 3$. It's sufficient to check if [v1, v2, v3] is l. indep. Set $av_1 + bv_2 + cv_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Find a, b, c. $\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (homogeneous λ . system) If A is invertible, then $\begin{bmatrix} 2\\ 2 \end{bmatrix} = A^{-1} \begin{bmatrix} 0\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ To see : + A is mertible, $A = \begin{bmatrix} 0 & -1 & 0 \\ 2 & 1 & 1 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & + & 0 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & -20 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & -2 & -2 \end{bmatrix} \begin{bmatrix} 3 & -20 \\ 0 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & -2 & -2 \end{bmatrix}$ det $A = (-1)^{(2-(-1)(-2))} = -4 \pm 0$. A is maxingular Example 5: Check if $p_1(x) = 2x^2 + 4$, $p_2(x) = x^2 = x$, $p_3(x) = x^2$ form a basis for $\mathcal{P}^{(2)}$. Jan $\mathcal{P}^{(2)} = 3$. $\begin{pmatrix} a \\ b \end{pmatrix} = A \begin{bmatrix} b \\ c \\ b \end{bmatrix} = \begin{pmatrix} b \\ b \\ b \end{bmatrix}$ (Recall 1x', x, 1) is a basis for P(2)) Set ap, + bp + cp = 0 $a(2x^{2}+4) + b(x^{2}-x) + c(x^{2}) = 0$ $(2a + b + c) \times + (-b) \times + 4a = 0.$ $\begin{bmatrix} 2 & -1 & 0 \\ 0 & -1 & 0 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ det $A = 4 \neq 0$. Then $\binom{a}{2} = A'\binom{a}{3}\binom{a}{3}$ MATH 4242-Week 5-2 mplies Ip, p, p, Ts a basis for p(3) Spring 2021

Remark: So far we have seen that $\{1, x, x^2\}$ and $\{2x^2 + 4, x^2 - x, x^2\}$ are basis for $\mathcal{P}^{(2)}$. $\forall iew q(x) = x^2 + 2x + 6$ as a vector $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$ in basis $\{x, x\}$

Question: How do we determine the coefficients of a quadratic polynomial in the basis $p_1(x) = 2x^2 + 4$, $p_2(x) = x^2 - x$, $p_3(x) = x^2$? For example,

Example 6: Consider $q(x) = x^2 + 2x + 6$. Determine a, b, c in $q = ap_1 + bp_2 + cp_3$.

$$\begin{array}{c} \begin{array}{c} \alpha p_{1} + b p_{2} + c p_{3} = q\\ \end{array} \\ \begin{array}{c} 5mi \left[lar & -s & above \\ \left[\begin{array}{c} 2 & -1 & 0 \\ 4 & 0 & 0 \end{array} \right] \left[\begin{array}{c} 4 \\ b \end{array} \right] = \left[\begin{array}{c} 2 \\ 2 \\ 6 \end{array} \right] \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} \left[\begin{array}{c} A \\ \end{array} \right] \left[\begin{array}{c} 3 \\ \end{array} \right] \left[\begin{array}{c} 3 \\ \end{array} \right] \left[\begin{array}{c} 3 \\ \end{array} \right] \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \left[\begin{array}{c} 3 \\ \end{array} \right] \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \left[\begin{array}{c} 2 \end{array} \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \left[\begin{array}{c} 2 \end{array} \right] \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \left[\begin{array}{c} 2 \end{array} \left[\begin{array}{c} 2 \end{array} \right] \left[\begin{array}{c} 2 \end{array} \left[\begin{array}{c} 2 \end{array} \right] \left[\begin{array}{c} 2 \end{array} \right] \left[\begin{array}{c} 2 \end{array} \left[\begin{array}{c} 2 \end{array} \right] \left[\begin{array}{c} 2 \end{array} \left[\begin{array}{c} 2 \end{array} \right] \left[\begin{array}{c} 2$$

if every $\mathbf{x} \in V$ can be written uniquely as a linear combination of the basis elements:

2.5 The Fundamental Matrix Subspaces $A_{n} : \mathbb{R}^n \longrightarrow \mathbb{R}^m$

 $C_{k} =$

\S Kernel and Image

We can associate to a matrix $A = A_{m \times n}$ a subspace of \mathbb{R}^n , called the *kernel* or *null space* of A.

Definition: The **kernel** of *A* is the set of all solutions **x** to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. We denote the kernel of *A* by ker *A*:

$$\ker A = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

Fact 1: ker A is a subspace of \mathbb{R}^n :

[To see this:]
$$A = 0$$

 $R^{n} = 0$
 $A(x+y) = Ax + Ay$
 $A = 0$
 $A = 0 + 0$
 $A = 0$
 A

Let's observe that if \mathbf{x}_1 and \mathbf{x}_2 are two solutions to the equation $A\mathbf{x} = \mathbf{b}$, then what can we say about their difference, $\mathbf{x}_1 - \mathbf{x}_2$?

$$A \times_{1} = b$$

$$A \times_{2} = b$$

$$Then \quad A(\times_{1} - \times_{2}) = A \times_{1} - A \times_{2} = b - b = 0$$

$$X_{1} - X_{2} \in ker A$$

$$Spring 2021$$

Fact 2: Suppose the linear system $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x}^* . Then **x** is a solution to $A\mathbf{x} = \mathbf{b} \iff \mathbf{x} = \mathbf{x}^* + z$, where $z \in \ker A$.

[To see this:]

(=)) We know both
$$x^*$$
, x are solutions of $Ax = b$.
Based on observation above,
 $X - x^* \in ker A$,
let $z = x - x^*$. Then $z \in ker A$. So we get
 $X = x^* + z$
 $(v) = x^* + z$

$$(\leftarrow) A(x) = A(x^{*} + z)$$

= $A x^{*} + A z$, $Ax^{*=b}$
= $b + 0$ $z \in kev A$
$$\frac{z - b}{2}$$
.
This gives x is a solution to $Ax = b$

Remark. In other words, *any* solution to $A\mathbf{x} = \mathbf{b}$ can be generated by starting with a *particular* solution \mathbf{x}^* , and adding to \mathbf{x}^* vectors in the kernel of A.

Example 1. Write the general solution to the following linear system in the form of $\mathbf{x} = \mathbf{x}^* + z$, where $z \in \ker A_{\cdot}$

Fact 3: If A is an $m \times n$ matrix, then the following conditions are equivalent: 1. ker $A = \{0\}$ (homogeneous system $A\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$);

- 2. $\operatorname{rank}(A) = n;$
- 3. The linear system $A\mathbf{x} = \mathbf{b}$ has no free variables;
- 4. The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \operatorname{img} A$.