
Lecture 13: Quick review from previous lecture

• A basis for a vector space V is a linearly independent set of vectors that
span V .

• Rn
has a basis {e1, . . . , en}. dimRn

= n.

• If V is any vector space that has a basis with n vectors, then any other basis

must also have n vectors.

—————————————————————————————————

Today we will discuss

• Sec. 2.4 Dimension and basis

• Sec. 2.5 The fundamental matrix subspaces

- Lecture will be recorded -

—————————————————————————————————

• Exam 1 will cover C.1 and C.2, except 1.7, 2.5, 2.6.

• “Exam 1 instructions” have been posted on Canvas homepage

(click Exam 1 Instructions). “Practice Exam” can be found there.

• Exam (2/24, Wed.) is closed book and everyone needs to open camera.
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Example 4: Determining if v1 =

0
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A form a

basis for R3
.

Example 5: Check if p1(x) = 2x2 + 4, p2(x) = x2 � x, p3(x) = x2 form a basis

for P (2)
.
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Remark: So far we have seen that {1, x, x2} and {2x2 + 4, x2 � x, x2} are basis

for P (2)
.

Question: How do we determine the coe�cients of a quadratic polynomial in the

basis p1(x) = 2x2 + 4, p2(x) = x2 � x, p3(x) = x2?
For example,

Example 6: Consider q(x) = x2+2x+6. Determine a, b, c in q = ap1+bp2+cp3.

Actually this expression is unique.

Fact 4: The elements v1, . . . ,vn form a basis of a vector space V if and only

if every x 2 V can be written uniquely as a linear combination of the basis

elements:

x = c1v1 + · · · + cnvn.
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2.5 The Fundamental Matrix Subspaces

§ Kernel and Image
We can associate to a matrix A = Am⇥n a subspace of Rn

, called the kernel or
null space of A.

Definition: The kernel of A is the set of all solutions x to the homogeneous

equation Ax = 0. We denote the kernel of A by kerA:

kerA = {x 2 Rn
: Ax = 0}.

Fact 1: kerA is a subspace of Rn
:

[To see this:]

Let’s observe that if x1 and x2 are two solutions to the equation Ax = b, then
what can we say about their di↵erence, x1 � x2?
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Fact 2: Suppose the linear system Ax = b has a solution x?
. Then

x is a solution to Ax = b () x = x?
+ z, where z 2 kerA.

[To see this:]

Remark. In other words, any solution to Ax = b can be generated by starting

with a particular solution x⇤
, and adding to x⇤

vectors in the kernel of A.
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Example 1. Write the general solution to the following linear system in the form

of x = x?
+ z, where z 2 kerA.
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Fact 3: If A is an m⇥ n matrix, then the following conditions are equivalent:

1. kerA = {0} (homogeneous system Ax = 0 has the unique solution x = 0);

2. rank(A) = n;

3. The linear system Ax = b has no free variables;

4. The linear system Ax = b has a unique solution for each b 2 imgA.
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