Lecture 14: Quick review from previous lecture OL mdep O spans U

• The elements $\mathbf{v}_1, \ldots, \mathbf{v}_n$ form a basis of V if and only if every $\mathbf{x} \in V$ can be written uniquely as a linear combination of the basis elements:

 $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n.$

• Let A be $m \times n$ matrix. The **kernel** of A is

$$\ker A = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \},\$$

homogeneous I. system

which is a subspace of \mathbb{R}^n .

Today we will discuss

• Sec. 2.5 the Kernel and Image.

- Lecture will be recorded -

- HW 5 due today 6pm.
- Exam 1 will cover C.1 and C. 2, except 1.7, 2.5, 2.6.
- "Exam 1 instructions" have been posted on Canvas homepage (click <u>Exam 1 Instructions</u>). "Practice Exam" can be found there.
- Exam (2/24, Wed.) is **closed book** and everyone needs to **open camera**.

Example 1. Write the general solution to the following linear system in the form of $\mathbf{x} = \mathbf{x}^* + z$, where $z \in \ker A$.

$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & -4 \\ 2 & -1 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 \\ -6 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} A \mid -\frac{1}{-6} \\ \frac{-6}{-4} \end{pmatrix} \xrightarrow{\textcircled{o}} 2 \xrightarrow{\textcircled{o}} 2 \xrightarrow{\textcircled{o}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -4 \\ 0 & 1 & -2 \end{pmatrix} \xrightarrow{\textcircled{o}} 2 \xrightarrow{\textcircled{o}} 2 \xrightarrow{\textcircled{o}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -4 \\ -4 \end{pmatrix} \xrightarrow{\textcircled{o}} 2 \xrightarrow{\textcircled{o}}$$

Fact 3: If A is an $m \times n$ matrix, then the following conditions are equivalent:

- 1. ker $A = \{\mathbf{0}\}$ (homogeneous system $A\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$);
- 2. $\operatorname{rank}(A) = n;$
- 3. The linear system $A\mathbf{x} = \mathbf{b}$ has no free variables;
- 4. The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \operatorname{img} A$.

§ To construct a basis for ker A.

§ To construct a basis for Left 1. Example 2. Suppose we have a 3-by-5 matrix $A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 2 & 3 & -1 & 0 & 2 \\ 1 & 1 & 0 & 1 & 2 \end{pmatrix}$. Find a basis for ker $A = \begin{cases} \times \in \mathbb{R}^5 & A \times = 0 \end{cases}$. Find a basis for ker $A = \begin{cases} \times \in \mathbb{R}^5 & A \times = 0 \\ \vdots & \vdots \\ \vdots & \vdots$ $A \xrightarrow{(2) - 2U}_{(3) - (1)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}, \quad \text{rank } A = 3$ Free variables : X3, X5 $3 \quad X_4 = -2 \times r$ $X_2 = X_3 - 2 X_5$ 2 $- \chi_2 = - (\chi_3 - 2\chi_5) = -$ X \bigcirc $\begin{pmatrix} x_1 \\ \vdots \\ x_5 \end{pmatrix} = \begin{pmatrix} -x_3 + 2x_5 \\ x_3 - 2x_5 \\ x_3 \\ -2x_5 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \times_3 + \begin{pmatrix} 2 \\ -2 \\ 0 \\ -2 \end{pmatrix} \times_5, \times_5, \times_5 \in \mathbb{R}$ $\ker A = \left\{ \begin{pmatrix} -x_3 + 2x_5 \\ x_3 - 2x_5 \\ x_3 - 2x_5 \end{pmatrix} \mid x_3, x_5 \in \mathbb{R} \right\}$ basis $x_3 = 0$, X5 = 0 5-3 [V, V2] 3 a basis for ter

Remark. In general, here's how to build a basis for the kernel. There will be **one basis vector for each free variable**, which is constructed by setting that free variable to 1, and all the other free variables to 0.

In particular, this tells us that

(2) Find the basis of ker A as well.
Free variables:
$$\frac{x_3}{3}, \frac{x_5}{2}$$
.
(3): $4x_4 + 2x_5 = 0$
 $x_4 = -\frac{1}{2}x_5$
(3): $4x_4 + 2x_5 = 0$
 $x_4 = -\frac{1}{2}x_5$
(3): $x_2 - x_4 + x_5 = 0$
 $x_2 = x_4 - x_5 = -\frac{3}{2}x_5$
(4): $2x_1 + 2x_2 + x_3 + 3x_4 + 2x_5 = 0$
MATH 4242-Week 5-3
(5): $2x_1 + 2x_2 + x_3 + 3x_4 + 2x_5 = 0$
 $5x_1 = -\frac{1}{2}x_3 + \frac{5}{2}x_5$

* Note that the rank of r does not depend on how we perform Gaussian elimination (that is, which permutations we perform). rank(A) only depends on A itself.

So far, we have seen that

 \S Coimage of A and cokernel of A.

Definition: The **coimage** of A is the image of its transpose, A^T . It is denoted coimg A:

coimg
$$A = \operatorname{img} A^T = \{A^T \mathbf{y} : \mathbf{y} \in \mathbb{R}^m\} \subset \mathbb{R}^n$$

The **cokernel** of A is the kernel of its transpose, A^T . It is denoted coker A:

 $\operatorname{coker} A = \ker A^{T} = \{ \mathbf{w} \in \mathbb{R}^{m} : A^{T} \mathbf{w} = \mathbf{0} \} \subset \mathbb{R}^{m}$

 \checkmark img A, ker A, coimg A, and coker A are the four fundamental "subspaces" of A.

so img A

Let's study coimg A first. It is the **span of the columns of** A^T , or equivalently the span of the **rows** of A. For this reason, it's also called the **row space** of A.

$$A = \begin{bmatrix} w_{1}^{T} \\ \vdots \\ w_{m}^{T} \end{bmatrix}_{m \times n} \qquad A^{T} = \begin{bmatrix} w_{1} & \cdots & w_{m} \end{bmatrix}_{n \times m} \qquad \text{coimg } A$$

$$coimg A = img (A^{T}) = span \begin{bmatrix} w_{1} & \cdots & w_{m} \end{bmatrix} = span \begin{bmatrix} rows & \sigma T A \end{bmatrix}$$

In principle, we could build a basis for $\operatorname{coimg} A$ the same way we learned how to do for $\operatorname{img} A$, by performing Gaussian elimination on A^T and taking the columns of A^T with pivots.

Similar to what we did in **Example 3** for A.

Example 4: We first bring A^T down to the row echelon form of A^T . Suppose we know the row echelon form of A^T :

$$\boldsymbol{A}^{T} = \begin{pmatrix} 1 & 2 & 2 & 0 & -1 \\ 0 & 0 & 2 & 0 & -1 \\ 0 & 0 & 0 & 7 & 2 \\ 2 & 4 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{row operations} \begin{pmatrix} 1 & 2 & 2 & 0 & -1 \\ 0 & 0 & 2 & 0 & -1 \\ 0 & 0 & 0 & 7 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Then a basis of coimg (A) $(img(A^T))$ is

$$\left\{ \begin{pmatrix} 1\\0\\0\\2 \end{pmatrix}, \begin{pmatrix} 2\\2\\0\\4 \end{pmatrix}, \begin{pmatrix} 0\\0\\7\\0 \end{pmatrix} \right\}$$

However, there is an **alternate way** of building **a basis for coimg** A. This method will let us see a profound connection between "img A" and "coimg A".

Observation.

• Performing for Gaussian elimination: (a) adding a multiple of one row to another row; and (b) permuting the order of rows, we have

$$A \underbrace{\longrightarrow}_{row\, operations} U \text{ (row echelon form)}$$

• Both row operations (a) and (b) above obviously do **not** change the row span (the row space of A).

Consequently, we have

Conclusion 1: The row echelon matrix U has exactly the same row space as the original matrix A.

Conclusion 2: Therefore, we can construct a basis for the (row space)

$\operatorname{coimg} A$

by bringing A to row echelon form using Gaussian elimination, and take the nonzero rows as the basis vectors.

Poll Question 1: Let V be a vector space with $\dim V = 5$ (dimension of V). Suppose $\mathbf{v}_1, \ldots, \mathbf{v}_4$ in V are linearly independent, can $\{\mathbf{v}_1, \ldots, \mathbf{v}_4\}$ form a basis for V?

 $\begin{array}{c} A) \ \mathrm{Yes} \\ B) \ \mathrm{No} \end{array}$