Lecture 14: Quick review from previous lecture
Ol. Mdep (2) spans $V$

- The elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis of $V$ if and only if every $\mathbf{x} \in V$ can be written uniquely as a linear combination of the basis elements:

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots c_{n} \mathbf{v}_{n}
$$

- Let $A$ be $m \times n$ matrix. The kernel of $A$ is

$$
\text { ker } A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\},
$$

which is a subspace of $\mathbb{R}^{n}$.
nomogeneous l. system

Today we will discuss

- Sec. 2.5 the Kernel and Image.


## - Lecture will be recorded -

- HW 5 due today 6 pm .
- Exam 1 will cover C. 1 and C. 2, except 1.7, 2.5, 2.6.
- "Exam 1 instructions" have been posted on Canvas homepage (click Exam 1 Instructions). "Practice Exam" can be found there.
- Exam (2/24, Wed.) is closed book and everyone needs to open camera.

Example 1. Write the general solution to the following linear system in the form of $\mathbf{x}=\mathbf{x}^{\star}+z$, where $z \in \operatorname{ker} A$.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & -1 & 0 \\
2 & 0 & -4 \\
2 & -1 & -2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
-1 \\
-6 \\
-4
\end{array}\right) \\
& \left(A \left\lvert\, \begin{array}{l}
-1 \\
-6 \\
-4
\end{array}\right.\right) \xrightarrow[(3)-2(1)]{(2)-2(1)}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 2 & -4 & -4 \\
0 & 1 & -2 & -2
\end{array}\right) \xrightarrow{(3)-\frac{1}{2}(2)}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 2 & -4 & -4 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \text { [See Lecture 13] }
\end{aligned}
$$

Free variable : $C$
(2) $2 b-4 c=-4 \Rightarrow b=2 c-2$
(1) $a-b=-1 \Rightarrow a=-1+b$
all solutions are $=2 c-3$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
2 c-3 \\
2 c-2 \\
c
\end{array}\right)=\frac{\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) c+\left(\begin{array}{c}
-3 \\
-2 \\
0
\end{array}\right)}{x^{*}, a \operatorname{sol} A+m \cos } \text { to } A x=b .
$$

Fact 3: If $A$ is an $m \times n$ matrix, then the following conditions are equivalent:

1. $\operatorname{ker} A=\{\mathbf{0}\}$ (homogeneous system $A \mathbf{x}=\mathbf{0}$ has the unique solution $\mathbf{x}=\mathbf{0}$ );
2. $\operatorname{rank}(A)=n$;
3. The linear system $A \mathbf{x}=\mathbf{b}$ has no free variables;
4. The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution for each $\mathbf{b} \in \operatorname{img} A$.
$\S$ To construct a basis for $\operatorname{ker} A$.
Example 2. Suppose we have a 3-by-5 matrix $A=\left(\begin{array}{rrrrr}1 & 1 & 0 & 0 & 0 \\ 2 & 3 & -1 & 0 & 2 \\ 1 & 1 & 0 & 1 & 2\end{array}\right)$.
Find a basis for $\operatorname{ker} A=\left\{x \in \mathbb{R}^{5} \mid A x=0\right\}^{(1)} x=\left(\begin{array}{cc}0 & 1 \\ x_{1} \\ x_{2} \\ 2 \\ x_{5}\end{array}\right)$.

$$
A \xrightarrow[(3)-(1)]{(2)-21)}\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

rank $A=3$

Free ańables $=\quad X_{3}, x_{5}$
(3) $x_{4}=-2 x_{5}$
(2) $x_{2}=x_{3}-2 x_{5}$
(1) $x_{1}=-x_{2}=-\left(x_{3}-2 x_{5}\right)=-x_{3}+2 x_{5}$

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-x_{3}+2 x_{5} \\
x_{3}-2 x_{5} \\
x_{3} \\
-2 x_{5} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0 \\
0
\end{array}\right) x_{3}+\left(\begin{array}{c}
2 \\
-2 \\
0 \\
-2 \\
1
\end{array}\right) x_{5}, x_{3}, x_{3} \\
\operatorname{Ker} A
\end{array}\right] \begin{gathered}
\left.-\left(\begin{array}{c}
-x_{3}+2 x_{5} \\
x_{3}-2 x_{5} \\
x_{3} \\
-2 x_{5} \\
x_{5}
\end{array}\right) \quad 1 \quad x_{3}, x_{5} \in \mathbb{R}\right\}
\end{gathered}
$$

To find a basis
$\operatorname{dim} \operatorname{ler} A=2$

$$
x_{3}=1, x_{5}=0
$$

$$
x_{3}=0, x_{5}=1
$$

$$
5-3
$$

$$
v_{1}=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0 \\
0
\end{array}\right) ; \quad v_{2}=\left(\begin{array}{c}
2 \\
-2 \\
0 \\
-2 \\
1
\end{array}\right)^{\prime}
$$

Then $\left\{v_{1}, v_{2}\right\}^{3-3}$ B a basis for ter ${ }^{\text {Spring }}$.

Remark. In general, here's how to build a basis for the kernel. There will be one basis vector for each free variable, which is constructed by setting that free variable to 1 , and all the other free variables to 0 .

In particular, this tells us that
If $A=A_{m \times n}$ and $r$ is the rank of $A$, then

$$
\operatorname{dim}(\operatorname{ker} A)=n-r
$$

Now we define


Definition: The image of the matrix $A=A_{m \times n}$ is the set containing of all images of $A$, that is,

$$
\begin{aligned}
& \operatorname{img} A=\left\{\underline{A \mathrm{x}}: \mathrm{x} \in \mathbb{R}^{n}\right\} . \\
& \text { out come }
\end{aligned}
$$

Fact 4: $\operatorname{img} A$ is a subspace of $\mathbb{R}^{m}$ since it is the span of the columns of $A$.
[To see this] $A=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]_{m \times n}, v_{i}=$ th columns of $A$.
For any $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ in $\mathbb{R}^{n}$,

$$
\begin{aligned}
& A x=\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\begin{aligned}
& x_{1} v_{1}+\ldots+x_{n} v_{n} . \\
&\left(l \text { combination of } v_{1} \ldots, v_{n}\right)
\end{aligned} \\
& \operatorname{mgy} A=\left\{A x\left|x \in \mathbb{R}^{n}\right|\right. \\
&=\left\{x_{1} v_{1}+\ldots+x_{n} v_{n} \mid x_{1} \ldots x_{n} \in \mathbb{R}\right\}
\end{aligned}
$$

${ }_{\text {MATH }}^{4242-\text { Week } 5}=\operatorname{span}\left\{V_{1}, \ldots-4, V_{n}\right\}$. Then ing $A^{\text {prong }}{ }_{13}^{212}$
a subspace of $\mathbb{R}^{m}$.
$\S$ To construct a basis for $\operatorname{img} A$.

$A \xrightarrow{(4)-2(1)}\left(\begin{array}{ccccc}(2) & 2 & 1 & 3 & 2 \\ 0 & (1) & 0 & -1 & 1 \\ 0 & 0 & 0 & (4) & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right), ~\binom{(4)}{4}\left(\begin{array}{lll}0 & 0 & 4 \\ 4 & 2 & \\ 6\end{array}\right.$
Look at submatrix formed from columns with pints
$\tilde{U}=\left(\begin{array}{ccc}2 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 4 \\ 0 & 0 & 0\end{array}\right) \quad \hat{U}=\left[\begin{array}{ccc}2 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 4\end{array}\right]$ is nonsingular.
So a basis of ing $A$ is $\left\{v_{1}, v_{2}, v_{3}\right\}$ (columns of "original" $A$ corresponding to pints)
(2) Find the basis of ger $A$ as well. Free variables: $x_{3}, x_{5}$.

(3)

$$
4 x_{4}+2 x_{5}=0
$$

(2)

$$
\begin{aligned}
& x_{4}=-\frac{1}{2} x_{5} \\
& : x_{2}-x_{4}+x_{5}=0 \\
& x_{2}=x_{4}-x_{5}=-\frac{3}{2} x_{5}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& : 2 x_{1}+2 x_{2}+x_{3}+3 x_{4}+2 x_{5}=0 \\
& x_{1}=-\frac{1}{2} x_{3}+\frac{5}{4} x_{5} .
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
\operatorname{ker} A & =\left\{\left.\left(\begin{array}{c}
-\frac{1}{2} x_{3}+\frac{5}{4} x_{5} \\
-\frac{3}{2} x_{5} \\
x_{3} \\
-\frac{1}{2} x_{5}
\end{array}\right) \right\rvert\, x_{3}, x_{5} \in \mathbb{R}\right\} . \\
x_{5}
\end{array}\right]\left(\begin{array}{c}
-\frac{1}{2} \\
0 \\
\vdots \\
0
\end{array}\right) x_{3}+\left(\begin{array}{c}
\frac{5}{4} \\
-\frac{3}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
V_{1}^{\prime}
\end{array}\right) x_{5}\left|x_{3}, x_{5} \in \mathbb{R}\right|\right] .
$$

$$
\left\{v_{1}, v_{2} \mid \text { is a basis for ken } A\right. \text {. }
$$

This san 5: $\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\binom{5}{0},\left(\begin{array}{c}5 \\ 0 \\ 0 \\ -2 \\ 4\end{array}\right)$.

- To find a basis for $\operatorname{img} A$, bring $A$ to "row echelon form" by Gaussian elimination. Then the columns of $A$ (the original matrix) where the pivots occur form a basis for $\operatorname{img} A$.
- In particular, the dimension of the image of $A$ will be the number of pivots, ie. the rank $r$ of $A$. That is,

$$
\operatorname{dim}(\operatorname{img} A)=r
$$

* Note that the rank of $r$ does not depend on how we perform Gaussian elimination (that is, which permutations we perform). $\operatorname{rank}(\mathrm{A})$ only depends on $A$ itself.

So far, we have seen that



Definition: The coimage of $A$ is the image of its transpose, $A^{T}$. It is denoted coimg $A$ :

$$
\operatorname{coimg} A=\operatorname{img} A^{T}=\left\{A^{T} \mathbf{y}: \mathbf{y} \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}
$$

The cokernel of $A$ is the kernel of its transpose, $A^{T}$. It is denoted cover $A$ :

$$
\text { cover } A=\operatorname{ker} A^{T}=\left\{\mathbf{w} \in \mathbb{R}^{m}: A^{T} \mathbf{w}=\mathbf{0}\right\} \subset \mathbb{R}^{m}
$$

$\checkmark \operatorname{img} A, \operatorname{ker} A, \operatorname{coimg} A$, and cover $A$ are the four fundamental "subspaces" of $A$.

## $\S$ coimg $A$

Let's study coimg $A$ first. It is the span of the columns of $A^{T}$, or equivalently the span of the rows of $A$. For this reason, it's also called the $\underbrace{\text { row space of } A}$.

$$
\begin{aligned}
A= & {\left[\begin{array}{c}
w_{1}^{\top} \\
\vdots \\
w_{m}^{\top}
\end{array}\right]_{m \times n} \quad A^{\top}=\left[\begin{array}{lll}
w_{1} & \cdots & w_{m}
\end{array}\right]_{n \times m} \underbrace{}_{\operatorname{coimg} A} } \\
& \operatorname{coing} A=\operatorname{img}\left(A^{\top}\right)=\operatorname{span}\left[\begin{array}{lll}
w_{1} & \cdots & w_{m}
\end{array}\right]=\operatorname{span}[\text { rows of } A]
\end{aligned}
$$

In principle, we could build a basis for coimg $A$ the same way we learned how to do for $\operatorname{img} A$, by performing Gaussian elimination on $A^{T}$ and taking the columns of $A^{T}$ with pivots.

Similar to what we did in Example 3 for $A$.
Example 4: We first bring $A^{T}$ down to the row echelon form of $A^{T}$. Suppose we know the row echelon form of $A^{T}$ :

$$
A^{T}=\left(\begin{array}{rrrrr}
1 & 2 & 2 & 0 & -1 \\
0 & 0 & 2 & 0 & -1 \\
0 & 0 & 0 & 7 & 2 \\
2 & 4 & 4 & 0 & -2
\end{array}\right) \underset{\text { row operations }}{\longrightarrow}\left(\begin{array}{rrrrr}
(1) & 2 & 2 & 0 & -1 \\
0 & 0 & (2) & 0 & -1 \\
0 & 0 & 0 & (7) & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Then a basis of coimg $(A)\left(\operatorname{img}\left(A^{T}\right)\right)$ is

However, there is an alternate way of building a basis for coimg $A$.
This method will let us see a profound connection between " $\operatorname{img} A$ " and "coimg $A$ ".

## Observation.

- Performing for Gaussian elimination: (a) adding a multiple of one row to another row; and (b) permuting the order of rows, we have
$A \underset{\text { row operations }}{\longrightarrow} U$ (row echelon form)
- Both row operations $(a)$ and $(b)$ above obviously do not change the row span (the row space of $A$ ).

Consequently, we have
Conclusion 1: The row echelon matrix $U$ has exactly the same row space as the original matrix $A$.

Conclusion 2: Therefore, we can construct a basis for the (row space) coimg $A$
by bringing $A$ to row echelon form using Gaussian elimination, and take the nonzero rows as the basis vectors.

Poll Question 1: Let $V$ be a vector space with $\operatorname{dim} V=5$ (dimension of $V)$. Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ in $V$ are linearly independent, can $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ form a basis for $V$ ?
A) Yes
B) No

