Lecture 15: Quick review from previous lecture
Let A be an $m \times n$ matrix.

- The kernel of A is

$$
\operatorname{ker} A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

- The image of the matrix A is the set containing of all images of A, that is,

$$
\operatorname{img} A=\left\{A \mathbf{x}: \mathrm{x} \in \mathbb{R}^{n}\right\}=\operatorname{span}\{\omega \text { lumns of } \boldsymbol{A}\} .
$$

- The coimage of A is the image of its transpose, A^{T}. It is denoted coimg A :

$$
\operatorname{coimg} A=\operatorname{img} A^{T}=\left\{A^{T} \mathbf{y} ; \mathbf{y} \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}
$$

$$
\left.=\text { span columens of } A^{\top}\right]=\text { span [rows of } A \text {) }
$$

- The cokernel of A is the kernel of its transpose, A^{T}. It is denoted coker A :

$$
\text { coker } A=\operatorname{ker} A^{T}=\left\{\mathbf{w} \in \mathbb{R}^{m}: A^{T} \mathbf{w}=\mathbf{0}\right\} \subset \mathbb{R}^{m}
$$

Today we will

- continue discussing Sec. 2.5 the kernel and image, coker, and coimg.
- discuss Sect. 3.1 Inner Products

- Lecture will be recorded -

- Exam (2/ $\boldsymbol{1}_{1}^{2}$, Wed.) is closed book and everyone needs to open camera.
- During the exam, you can see Exam 1 problems through

1) Canvas:

Assignments \rightarrow Exam 1

2) instructor's share screen via Zoom (contains first couple of problems due to the limit of screen).

However, there is an alternate way of building a basis for coimg A.
This method will let us see a profound connection between " img A " and "coimg A ".

Observation.

- Performing for Gaussian elimination: (a) adding a multiple of one row to another row; and (b) permuting the order of rows, we have

$$
\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{m}
\end{array}\right]_{m \times n}=A \underset{\text { row operations }}{\longrightarrow} U_{v} \quad U_{\text {(row echelon form })}\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{m_{m}}
\end{array}\right] .
$$

- Both row operations (a) and (b) above obviously do not change the row span (the row space of A) $A=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}=\operatorname{span}\left\{u_{1} \ldots u_{m}\right\}$.
Consequently, we have
Conclusion 1: The row echelon matrix U has exactly the same row space as the original matrix A.

Conclusion 2: Therefore, we can construct a basis for the (row space)

coimg A

by bringing A to row echelon form using Gaussian elimination, and take the nonzero rows as the basis vectors.

Example 5. The same matrix as in Example 3:
$A \longrightarrow U=\left(\begin{array}{rrrrr}(1) & 2 & 2 & 3 & 2 \\ \hline 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & (4) & 2 \\ 0 & 0 & 0 & \frac{1}{0} & 0\end{array}\right)$
Then a basis of coimg $(A)\left(\operatorname{img}\left(A^{T}\right)\right)$ is

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
2 \\
3 \\
2
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
4 \\
2
\end{array}\right)\right\} .
$$

Fact 6: If the rank of A is r, the basis we construct for coimg A will have r vectors. Thus,

$$
\underline{\operatorname{dim}(\operatorname{img} A)}=\operatorname{dim}(\operatorname{coimg} A)=r
$$

\S cover A

$$
\begin{aligned}
& \operatorname{ing} A=\operatorname{span}\{\text { columns of } A\} \\
& \operatorname{cosing} A=\operatorname{span}\{\text { rows of } A\}
\end{aligned}
$$

To build a basis for cover A, solve the n-by- m homogeneous system $A^{T} \mathbf{y}=\mathbf{0}$, and set each free variable to 1 , and the others to zero.
*In other words, apply the exact same procedure as for finding a basis for $\operatorname{ker} A$.

Q: What is the dimension of cover A ?
It is the number of free variables in $A^{T} \mathbf{y}=\mathbf{0}$. Since A^{T} has m columns and rank r, there are $m-r$ free variables, hence

Fact 7: If A is an $m \times n$ matrix with $\operatorname{rank}(A)=r$, then $\operatorname{dim}($ cover $A)=m-r$

Summary:

We can summarize what we've learned about the four fundamental subspaces in the following theorem, called the Fundamental Theorem of Linear Algebra:

Let A be an $m \times n$ matrix, and let r be its rank. Then dim coimg $A=\operatorname{dimimg} A=\operatorname{ank} A=\operatorname{rank} A^{T}=r$, $\operatorname{dim} \operatorname{ker} A=n-r, \quad \operatorname{dim}$ cover $A=m-r$.
**Again, a very useful (and surprising) aspect of this theorem is that the column space and row space of A have the same dimension, equal to the rank r of A.

Summary

Let A be an $m \times n$ matrix with $\operatorname{rank}(A)=r$.

$$
A \underset{\text { row operations }}{\longrightarrow} U \text { (row echelon form) }
$$

dim	Vector Space	Basis
$\mathrm{n}-\mathrm{r}$	$\operatorname{ker}(A)$	Solve $A \mathbf{x}=\mathbf{0}$, each free variable gives a basis vector
r	$\operatorname{img}(A)$	columns of A where the pivots occur
r	$\operatorname{coimg}(A)$	(1) columns of A^{T} where the pivots occur or (2) nonzero rows of U containing pivots
$\mathrm{m}-\mathrm{r}$	$\operatorname{coker}(A)$	Solve $A^{T} \mathbf{x}=\mathbf{0}$, each free variable gives a basis vector

Example 4: Consider the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 3 \\
2 & 1 & 3 & 4 \\
1 & 0 & 1 & 1
\end{array}\right)_{3 \times 4} \quad U
$$

Find a basis for $\operatorname{ker} A, \operatorname{img} A$, coimg A, cover A, respectively.

$$
A \xrightarrow[(3-1)]{(2)-2(1)}\left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & -1 & -1 & -2 \\
0 & -1 & -1 & -2
\end{array}\right) \xrightarrow{(3)-(2)}\left(\begin{array}{ccc}
\frac{(1)}{0} & 2 & 3 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right), \operatorname{rank} A=2
$$

(1) A basis for ing $A:\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right] \operatorname{dim}(\operatorname{mg} A)=2$
(2) for y cooing $A=\left\{\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ -1 \\ -2\end{array}\right)\right\}, \operatorname{dim}(\operatorname{cosing} A)=2$
(3) A basis for bor A : $\quad \operatorname{dim}(\operatorname{ber} A)=4-2=2$ Find x so that $A x=0$. Free variables x_{3}, x_{4}

$$
(2):-x_{2}-x_{3}-2 x_{4}=0
$$

$$
x_{2}=\frac{x_{3}}{4}-2 x_{4}
$$

$$
x_{1}+x_{2}+2 x_{3}+3 x_{4}=0
$$

(4) A basis for whir $A=\operatorname{ker}\left(A^{\top}\right): \operatorname{dim}$ cuter A

$$
A^{\top} x=0
$$

$$
=m-r=1
$$

$$
A^{\top} \longrightarrow()^{\text {exercise }} \text {, cover } A=\left\{\left(\begin{array}{c}
x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right)\left|x_{3} \in \mathbb{R}\right|\right.
$$

A basis for cokes A is $\left\{\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$. A .
$\mathbb{R}^{n} \xrightarrow{A_{m \times n}} \mathbb{R}^{m}$
$\operatorname{ker} A$
$\operatorname{ing} A$
coming A
weer A

$$
\begin{aligned}
& x_{1}=-x_{3}-x_{4} \\
& \operatorname{ker} A=\left\{\left.\left(\begin{array}{c}
-x_{3}-x_{4} \\
-x_{3}-2 x_{4} \\
x_{3}
\end{array}\right) \right\rvert\, x_{3}, \quad x_{4} \in \mathbb{R}\right\} . \\
& x_{3}=1, x_{4}=0 \quad x_{3}=0, x_{4}=1 \\
& \left.\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1 \\
0
\end{array}\right) ;\left(\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right)\right] \text { is a basis for kea } A \text {. }
\end{aligned}
$$

3 Inner Products and Norms

3.1 Inner Products

§ Inner products in the Euclidean space \mathbb{R}^{n}

Definition: If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ are any two vectors in \mathbb{R}^{n}, then we define their inner product, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, by:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+\ldots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Note that

$$
\begin{gathered}
\left(y_{1}-y_{n}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]^{T} \\
\langle\mathbf{x}, \mathbf{y}\rangle=\overbrace{\mathbf{y}^{T} \mathbf{x}}^{=\underline{\mathbf{x}^{T} \mathbf{y}}})
\end{gathered}
$$

As in \mathbb{R}^{2}, if $\mathbf{x}=(x, y)^{T}$ is a vector, then the "Pythagorean Theorem" tells us that its length is given by $\sqrt{x^{2}+y^{2}}$, and is denoted by

$$
\begin{aligned}
\|\mathbf{x}\| & =\sqrt{x^{2}+y^{2}} . \\
& =\sqrt{\langle\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{x}}\rangle}
\end{aligned}
$$

Definition: We will use this to define the length of vectors in \mathbb{R}^{n} and denote the length of a vector \mathbf{x} by

$$
\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

We call $\|\mathbf{x}\|$ the norm of \mathbf{x}.
If $\mathbf{x} \neq 0$, then $\|\mathbf{x}\|>0$. In addition, we also have

$$
\|x\|=0 \quad \Leftrightarrow \quad x=0
$$

Example 1. If $\mathbf{x}=(1,0,1)^{T}$ and $\mathbf{y}=(-2,1,2)^{T}$, then
(1) find $\|\mathbf{x}\|,\|\mathbf{y}\|,\langle\mathbf{x}, \mathbf{x}+3 \mathbf{y}\rangle$ and also normalize \mathbf{x} and \mathbf{y}.
(2) Is $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$?
(I)

$$
\begin{aligned}
& \|x\|=\sqrt{1^{2}+0^{2}+1^{2}}=\sqrt{2} . \\
& \|y\|=\sqrt{(-2)^{2}+1^{2}+2^{2}}=\sqrt{9}=3 .
\end{aligned}
$$

normalize x, y.

$$
\begin{aligned}
& \frac{x}{\|x\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \frac{y}{\|y\|}=\frac{1}{3}\left(\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right) \\
&\langle x, x+3 y\rangle=\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+3\left(\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right)\right\rangle \\
&=\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
-5 \\
3 \\
7
\end{array}\right)\right\rangle=-5+0+7 \\
&|\mid=2 \\
&\langle x, x\rangle+3\langle x, y\rangle\left.\left.=\|x\|^{2}+3\left\langle\left(\begin{array}{l}
1 \\
1 \\
i
\end{array}\right),\right| \begin{array}{c}
-2 \\
1 \\
2
\end{array}\right)\right\rangle \\
&=2+3 \cdot 0=2
\end{aligned}
$$

(2) Yes.

Q: Based on these observation on $\langle\mathbf{x}, \mathbf{y}\rangle$ on \mathbb{R}^{n} above, what properties do you think they should hold for a "general" inner product.

§ Abstract definition of general inner products

Definition: Let V be a vector space. An inner product on V is a functions that assigns every pairing two vectors \mathbf{x} and \mathbf{y} in V to obtain a real number, denoted

$$
\langle\mathbf{x}, \mathbf{y}\rangle,
$$

such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and scalars $c, d \in \mathbb{R}$, the following hold:
(1) Bilinearity:

$$
\begin{aligned}
\langle c \mathbf{u}+d \mathbf{v}, \mathbf{w}\rangle & =c\langle\mathbf{u}, \mathbf{w}\rangle+d\langle\mathbf{v}, \mathbf{w}\rangle, \\
\langle\mathbf{u}, c \mathbf{v}+d \mathbf{w}\rangle & =c\langle\mathbf{u}, \mathbf{v}\rangle+d\langle\mathbf{u}, \mathbf{w}\rangle,
\end{aligned}
$$

(2) Symmetry: $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle$,
(3) Positivity: $\langle\mathbf{v}, \mathbf{v}\rangle>0$ whenever $\mathbf{v} \neq 0$. Moreover, $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}=0$.

Definition: A vector space V equipped with a specific inner product is called an inner product space.

The associate norm of a vector $\mathbf{v} \in V$ is defined as

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle} . \quad\left(B_{y}(3), \quad\|v\| \geq 0\right) .
$$

In other words, an inner product space V that is a vector space equipped with an additional way of pairing two vectors \mathbf{x} and \mathbf{y} in V to obtain a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$.

Example 2. We have known that the inner product on \mathbb{R}^{n} defined earlier by
satisfies these three axioms.

Example 3. Show that for all vectors \mathbf{x} and \mathbf{y} in an inner product space V,

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =2\left(\|x\|^{2}+\|y\|^{2}\right) \\
\|x+y\|^{2}=\langle x+y, x+y & \stackrel{(1)}{=}\langle x, x+y\rangle+\langle y, x+y\rangle \\
& \stackrel{\text { 只 }}{=}\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& \stackrel{(2)}{=} \underbrace{\|x\|^{2}}+2\langle x, y\rangle+\|y\|^{2} \\
\|x-y\|^{2}= & \text { he continued ! }
\end{aligned}
$$

§ The same vector space V can have many different inner products.

 For example, while we originally equipped \mathbb{R}^{n} with the standard inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$, we can also define "other" inner products on \mathbb{R}^{n} as well. See discussions below.Example 4.(Another inner products on \mathbb{R}^{n}) If c_{1}, \ldots, c_{n} are positive numbers, we can define

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{y}\rangle=c_{1} x_{1} y_{1}+\ldots+c_{n} x_{n} y_{n}=\sum_{i=1}^{n} c_{i} x_{i} y_{i} \tag{1}
\end{equation*}
$$

This is a legitimate inner product (check this as an exercise). It is called a weighted inner product, with weights c_{1}, \ldots, c_{n}.

Observe that while we can write the ordinary inner product on \mathbb{R}^{n} as $\mathbf{x}^{T} \mathbf{y}$, we can write the above weighted inner product as

