Lecture 15: Quick review from previous lecture

Let A be an $m \times n$ matrix.

• The **kernel** of A is

$$\ker A = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$

• The **image** of the matrix A is the set containing of all images of A, that is,

$$\operatorname{img} A = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}$$
 = span (columns of A)

• The **coimage** of A is the image of its transpose, A^T . It is denoted coimg A:

$$\operatorname{coimg} A = \operatorname{img} A^T = \{A^T \mathbf{y} : \mathbf{y} \in \mathbb{R}^m\} \subset \mathbb{R}^n$$

= span f columns of A^T is the learned of its transformed and the density of A

• The **cokernel** of A is the kernel of its transpose, A^T . It is denoted coker A: coker $A = \ker A^T = \{ \mathbf{w} \in \mathbb{R}^m : A^T \mathbf{w} = \mathbf{0} \} \subset \mathbb{R}^m$

Today we will

- continue discussing Sec. 2.5 the kernel and image, coker, and coimg.
- discuss Sect. 3.1 Inner Products

- Lecture will be recorded -

- Exam (2/14, Wed.) is **closed book** and everyone needs to **open camera**.
- During the exam, you can see Exam 1 problems through 1) Canvas:

$\mathbf{Assignments} \rightarrow \mathbf{Exam} \ \mathbf{1}$

2) instructor's share screen via Zoom (contains first couple of problems due to the limit of screen).

However, there is an **alternate way** of building **a basis for coimg** A. This method will let us see a profound connection between " $\operatorname{img} A$ " and " $\operatorname{coimg} A$ ".

Observation.

• Performing for Gaussian elimination: (a) adding a multiple of one row to another row; and (b) permuting the order of rows, we have

$$\begin{bmatrix} \vdots \\ \vdots \\ w_{m} \end{bmatrix} = A \xrightarrow{row operations} U \text{ (row echelon form)}$$

• Both row operations (a) and (b) above obviously do **not** change the row span (the row space of A) A = span [w, ..., wm] = span [u, ... um] Consequently, we have

Conclusion 1: The row echelon matrix U has exactly the same row space as the original matrix A.

Conclusion 2: Therefore, we can construct a basis for the (row space)

coimg A

by bringing A to row echelon form using Gaussian elimination, and take the nonzero rows as the basis vectors.

Example 5. The same matrix as in Example 3:

$$A \longrightarrow U = \begin{pmatrix} 1 & 2 & 2 & 3 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Then a basis of coimg (A) (img (A^T)) is $\begin{pmatrix} 1 & 2 & 2 & 3 & 2 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

Fact 6: If the rank of A is r, the basis we construct for $\operatorname{coimg} A$ will have r vectors. Thus,

$$\frac{\dim(\operatorname{img} A) = \dim(\operatorname{coimg} A) = r}{\operatorname{img} A = \operatorname{span} \int \operatorname{columns} \operatorname{sf} A \int}$$

$$\operatorname{coimg} A = \operatorname{span} \int \operatorname{columns} \operatorname{sf} A \int$$

$\mathbf{s} \mathbf{coker} A$

To build a basis for coker A, solve the *n*-by-*m* homogeneous system $A^T \mathbf{y} = \mathbf{0}$, and set each free variable to 1, and the others to zero.

*In other words, apply the exact same procedure as for finding a basis for ker A.

Q: What is the dimension of coker A? It is the number of <u>free</u> variables in $A^T \mathbf{y} = \mathbf{0}$. Since A^T has m columns and rank r, there are m - r free variables, hence

Fact 7: If A is an $m \times n$ matrix with rank(A) = r, then dim(coker A) = m - r

Summary:

We can summarize what we've learned about the four fundamental subspaces in the following theorem, called the *Fundamental Theorem of Linear Algebra*:

Let A be an
$$m \times n$$
 matrix, and let r be its rank. Then
dim coimg $A = \dim \operatorname{img} A = \operatorname{rank} A = \operatorname{rank} A^T = r$,
dim ker $A = n - r$,
dim coker $A = m - r$.

**Again, a very useful (and surprising) aspect of this theorem is that the column space and row space of A have the same dimension, equal to the rank r of A.

Summary

Let A be an $m \times n$ matrix with rank(A) = r.

$$A \underbrace{\longrightarrow}_{row\, operations} U \text{ (row echelon form)}$$

dim	Vector Space	Basis
n-r	$\ker(A)$	Solve $A\mathbf{x} = 0$, each free variable gives a basis vector
r	$\operatorname{img}\left(A ight)$	columns of A where the pivots occur
r	$\operatorname{coimg}(A)$	(1) columns of A^T where the pivots occur
		or (2) nonzero rows of U containing pivots
m-r	$\operatorname{coker}\left(A\right)$	Solve $A^T \mathbf{x} = 0$, each free variable gives a basis vector

Example 4: Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 0 & 1 & 1 \end{pmatrix}_{3 \times 4} \quad \text{T}$$

Find a basis for ker A, img A, coing A, coker A, respectively.

$$A \stackrel{(2)-2(0)}{\textcircled{3}-0} \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & -1 & -1 & -2 \\ 0 & -1 & -1 & -2 \end{pmatrix} \stackrel{(2)-2}{\textcircled{3}-0} \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & -1 & -1 & -2 \\ 0 & -1 & -1 & -2 \end{pmatrix} \stackrel{(2)-2}{\textcircled{3}-0} \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & -1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ rank } A = 2$$

$$(A \quad basis \quad for \quad ing A : \qquad \int \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \right), \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \quad drn(ing A) = 2$$

$$(A \quad basis \quad for \quad ing A : \qquad \int \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \right), \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right), drn(ing A) = 2$$

$$(A \quad basis \quad for \quad ing A : \qquad \int \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right), \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right), drn(ing A) = 2$$

$$(A \quad basis \quad for \quad basis \quad for \quad basis \quad for \quad basis \quad for \quad (bor A) = 4 - 2 = 2$$

Find $\times \quad so \quad thet \quad A \times = 0.$ Free variables \times_1, \times_4

$$(2): - \times_2 - \times_3 - 2 \times_4 = 0.$$

MATH 4242-Week 6-1

$$(1): \quad X_1 + \times_2 + 2 \times_3 + 3 \times_4 = 0$$

$$X_{1} = -X_{3} - X_{4}$$
ker $A = \left(\begin{pmatrix} x_{3} + X_{4} \\ -X_{3} + 2X_{4} \end{pmatrix} \mid X_{3}, X_{4} \in \mathbb{R} \right)$

$$X_{3} = 0, X_{4} = 1$$

$$\left(\begin{pmatrix} x_{3} \\ 0 \end{pmatrix} \right)^{T} = 0, X_{4} = 1$$

$$\left(\begin{pmatrix} x_{3} \\ 0 \end{pmatrix} \right)^{T} = 0, X_{4} = 1$$

$$\left(\begin{pmatrix} x_{3} \\ 0 \end{pmatrix} \right)^{T} = 0, X_{4} = 1$$

$$A^{T} = 0$$

3 Inner Products and Norms

3.1 Inner Products

Inner products in the Euclidean space \mathbb{R}^n δ

Definition: If $\mathbf{x} = (x_1, \ldots, x_n)^T$ and $\mathbf{y} = (y_1, \ldots, y_n)^T$ are any two vectors in \mathbb{R}^n , then we define their **inner product**, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, by:

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Note that Note that $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^T \mathbf{x} \quad (= \mathbf{x}^T \mathbf{y})$ As in \mathbb{R}^2 , if $\mathbf{x} = (x, y)^T$ is a vector, then the "Pythagorean Theorem" tells us that its length is given by $\sqrt{x^2 + y^2}$, and is denoted by $\sqrt{x^2 + y^2}$, (\mathbf{x}, \mathbf{y})

$$\|\mathbf{x}\| = \sqrt{x^2 + y^2}.$$

Definition: We will use this to define the length of vectors in \mathbb{R}^n and denote the length of a vector \mathbf{x} by

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{x_1^2 + \ldots + x_n^2}$$

We call $\|\mathbf{x}\|$ the **norm** of \mathbf{x} .

If $\mathbf{x} \neq 0$, then $\|\mathbf{x}\| > 0$. In addition, we also have

$$\|\mathbf{x}\| = 0 \quad \Leftrightarrow \quad \mathbf{x} = 0.$$

Example 1. If $\mathbf{x} = (1, 0, 1)^T$ and $\mathbf{y} = (-2, 1, 2)^T$, then
(1) find $\ \mathbf{x}\ $, $\ \mathbf{y}\ $, $\langle \mathbf{x}, \mathbf{x} + 3\mathbf{y} \rangle$ and also normalize \mathbf{x} and \mathbf{y} .
(2) Is $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$?

U)	$ \times = \int ^{2} + o^{2} + ^{2} = \int 2$
	$ y = \int (-2)^2 + ^2 + 2^2 = \int 9 = 3$
	normalize x, y.
	$\frac{X}{ X } = \int_{-2}^{+} \left(\frac{1}{2} \right), \frac{Y}{ Y } = \frac{1}{3} \left(\frac{1}{2} \right).$
	$\langle x, x+3y \rangle = \langle \begin{pmatrix} i \\ i \end{pmatrix}, \begin{pmatrix} i \\ i \end{pmatrix} + 3 \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} \rangle$
	$= \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -5 \\ 3 \\ 7 \end{pmatrix} \right\rangle = -5 + 0 + 7$ $= 2$
	$\langle X, X \rangle + 3 \langle X, Y \rangle = X ^2 + 3 \langle (,,,,)$
	$= 2 + 3 \cdot 0 = 2$
(2)	Yes,

Q: Based on these observation on $\langle \mathbf{x}, \mathbf{y} \rangle$ on \mathbb{R}^n above, what properties do you think they should hold for a "general" inner product.

§ Abstract definition of general inner products

Definition: Let V be a vector space. An **inner product** on V is a functions that assigns every pairing two vectors \mathbf{x} and \mathbf{y} in V to obtain a <u>real number</u>, denoted

 $\langle \mathbf{x}, \mathbf{y} \rangle$,

such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and scalars $c, d \in \mathbb{R}$, the following hold:

(1) **Bilinearity:**

(2) Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$,

(3) **Positivity:** $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ whenever $\mathbf{v} \neq 0$. Moreover, $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$.

Definition: A vector space V equipped with a specific inner product is called an inner product space. The associate **norm** of a vector $\mathbf{v} \in V$ is defined as $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$. ($\mathcal{B}_{\mathcal{F}}$ (3), $\||\mathcal{I}|| \ge 0$)

In other words, an inner product space V that is a vector space equipped with an additional way of pairing two vectors \mathbf{x} and \mathbf{y} in V to obtain a <u>real number</u>, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$.

vector space + "mner product" => mner product

Example 2. We have known that the inner product on \mathbb{R}^n defined earlier by

$$\langle \mathbf{x}, \mathbf{y}
angle = \sum_{i=1}^n x_i y_i$$

satisfies these three axioms.

Example 3. Show that for all vectors \mathbf{x} and \mathbf{y} in an inner product space V,

$$\|\mathbf{x} + \mathbf{y}\|^{2} + \|\mathbf{x} - \mathbf{y}\|^{2} = 2(\|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2})$$

$$\|\mathbf{x} + \mathbf{y}\|^{2} = \langle \mathbf{x} + \mathbf{y}, \ \mathbf{x} + \mathbf{y} \rangle \stackrel{(i)}{=} \langle \mathbf{x}, \ \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \ \mathbf{x} + \mathbf{y} \rangle$$

$$\stackrel{(i)}{=} \langle \mathbf{x}, \ \mathbf{x} \rangle + \langle \mathbf{x}, \ \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\stackrel{(i)}{=} \langle \mathbf{x}, \ \mathbf{x} \rangle + \langle \mathbf{x}, \ \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\stackrel{(i)}{=} \langle \mathbf{x}, \ \mathbf{x} \rangle + \langle \mathbf{x}, \ \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\stackrel{(i)}{=} \langle \mathbf{x}, \ \mathbf{x} \rangle + \langle \mathbf{x}, \ \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\stackrel{(i)}{=} \langle \mathbf{x}, \ \mathbf{x} \rangle + \langle \mathbf{x}, \ \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

§ The same vector space V can have many different inner products. For example, while we originally equipped \mathbb{R}^n with the standard inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$, we can also define "other" inner products on \mathbb{R}^n as well. See discussions below.

Example 4.(Another inner products on \mathbb{R}^n) If c_1, \ldots, c_n are positive numbers, we can define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{c_1} x_1 y_1 + \ldots + \mathbf{c_n} x_n y_n = \sum_{i=1}^n \mathbf{c_i} x_i y_i.$$
 (1)

This is a legitimate inner product (check this as an exercise). It is called a **weighted inner product**, with weights c_1, \ldots, c_n .

Observe that while we can write the ordinary inner product on \mathbb{R}^n as $\mathbf{x}^T \mathbf{y}$, we can write the above weighted inner product as