Lecture 15: Quick review from previous lecture

Let A be an m X n matrix.
e The kernel of A is

ker A = {x € R": Ax = 0}
e The image of the matrix A is the set containing of all images of A, that is,
imgA ={Ax :x e R"} = srm{wlums st A }
e The coimage of A is the image of its transpose, A”. It is denoted coimg A:

coimg A = img AT = {Aly cR"} CRY
& & = {Sf’av-fz’luu-v% }0‘" AT =S aw{( s "fA

e The cokernel of A is the kernel of its transpose, A*. It is denoted coker A:
coker A = ker AT = {w ¢ R™ : A'w =0} Cc R™

Today we will

e continue discussing Sec. 2.5 the kernel and image, coker, and coimg.

e discuss Sect. 3.1 Inner Products

- Lecture will be recorded -

2
e Fxam (2/}}, Wed.) is closed book and everyone needs to open camera.

e During the exam, you can see Exam 1 problems through
1) Canvas:

Assignments — Exam 1

2) instructor’s share screen via Zoom (contains first couple of problems due to
the limit of screen).
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However, there is an alternate way of building a basis for coimg A.
This method will let us see a profound connection between “ img A” and “coimg A”.

Observation.

e Performing for Gaussian elimination: (a) adding a multiple of one row to an-
other row; and (b) permuting the order of rows, we have

w,
. —A — U (row echelon form
[ : ] - ~ \\( u, )
W row operations [ .

m

t

MAN
e Both row operations (a) and (b) above Sbviotisly do not change the row span

(the row spacgoo;él),q = Spam { W, ... Wm} = fPOu[ u, --- ““"I

Consequently, we have

Conclusion 1: The row echelon matrix U has exactly the same row space as
the original matrix A.

Conclusion 2: Therefore, we can construct a basis for the (row space)
coimg A

by bringing A to row echelon form using Gaussian elimination, and take the

nonzero rows as the basis vectors.

Example 5. The same matrix as in Example 3:

D2 2 3 2

00 (D -1 1

A=U=14 o 7% )
00 0 0 0

Then a basis of coimg (A) (img (AT)) is

(2).(3)]
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'Fact 6: If the rank of A is r, the basis we construct for coimg A will have r
vectors. Thus,

dim(img A) = dim(coimg A) = r
Mj A = $)7a- foolumw SI’ AJ
com.d A - Sp & f g W) éf’ AJ

§ coker A
To build a basis for coker A, solve the n-by-m homogeneous system ALy=-0,
and set each free variable to 1, and the others to zero.

*In other words, apply the exact same procedure as for finding a basis for ker A.

Q: What is the dimension of coker A?
It is the number of free variables in A’y = 0. Since A’ has m columns and rank
r, there are m — r free variables, hence

Fact 7: If Aisan m X n matrix with rank(A) = r, then

dim(coker A) =an —r

Summary:
We can summarize what we've learned about the four fundamental subspaces in
the following theorem, called the Fundamental Theorem of Linear Algebra:

Let A be an m X n matrix, and let r be its rank. Then

dim coimg A = dimimg A = @ — ra@: T

dimker A =n —r, dim coker A = m — r.

*Again, a very useful (and surprising) aspect of this theorem is that ¢he column
space andaow spaceof A have the g@amedimension, equal to thetrank 7 of A.
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Summary

Let A be an m x n matrix with rank(A) = r.

A — U (row echelon form)

row operations

dim | Vector Space | Basis
n-r ker(A) Solve Ax = 0, ¢each free variable gives@ basis vector
r img (A) columns of A where the pivots occur
r coimg (A) (1) columns of AT where the pivots occur
or (2) nonzero rows of U containing pivots
m-r coker (A) Solve Alx = 0, eachifreevariable gives arbasisvector

Example 4: Consider the matrix

1 1 2 3
A= 1|21 3 4
1 0 1 1 3x4
Find a ba for er A, img A, coimg A, coker A, respec
2 3
AT S )
o =l 4 .
‘ /
@ A hess o W“J '4 [('?)/ /‘;/)} -J«MC%,A)=2
’ i > " |
O » tem& [ (§),(§)] stmn

D A bast Fr b2l dw (kv B) = 4 -2=2

N

FFMA X S0 thet A X = 0 Cree ‘avinbles 7‘3’ Xg

@) - X, — X3 =2X% =0.
%: - T}; - 1 )(q,_
) - X, + Xa 1+ 2 X 4+ 33X, =0
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X = = % — X4

kwA‘l(.-::'.::‘,) I Ay K éiE}
:; :

% =" Xy=o Xg=0 X =|

I, (:.) ). (:;l) f “ basis dulad

D B basi u b Az kerldT): dim aloA

o =m-v =1

AT x =0 .
exercile

A

AT ( ) | WMA,”_E,)MGQI'
A bz fv coke & T f(—:/)f g

" A N
IR F"¥\> R

kev A g A
w>ag A whkes A



3 Inner Products and Norms
3.1 Inner Products

8 Inner products in the Euclidean space R"

Definition: If x = (z1,...,2,)) andy = (y1,...,y,)’ are any two vectors in
R™ then we define their inner product, denoted (x,y), by:

(X,y) =211 + ... + 2y, = szyz
i=1

R

K
N\
TX ( :XTY) ) Y,

Note that
(x,y) =y

— ( X, - K )1(
As in R? if x = (z,y)! is a vector, then the “Pythagore‘oan Hedrem” tells us
that its length is given by /22 + 42, and is denoted by JEgi (x4
Il = /225 42 et
Vensmmnt® - —y pry ’ %
, = J<%, ) \
Definition: We will use this to define the length of vectors in R” and denote

the length of a vector x by

x| = V{x,x) =/xF+ ...+ 22

We call ||x]|| the mormrofix.

If x # 0, then ||x|| > 0. In addition, we also have

Ix|=0 < x=0.
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Example 1. If x = (1,0,1)" and y = (-2, 1,2)7, then
(1) find ||x]|, |l¥]l, (x,x+ 3y) and also normalize x and y.
(2) Is (x,y) = (y,%)?

() x| = J 15+ o' +)? = J 2 .

gl = Jers peer = J§ = 3
hormalize x , g4,
X _ L) y
ey ~ z ( |) , f‘g"‘ = /z’)

= 2
Xt @< gy = s 2 (4) 7))
= 2+3.0 =2

) 7/65

Q: Based on these observation on (x,y) on R" above, what properties do you
think they should hold for a “general” inner product.
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§ Abstract definition of general inner products

'Definition: Let V be a vector space. An inner product on V is a functions |
that assigns every pairing two vectors x and y in V' to obtain a real number,
denoted

(x,y),
such that for all u, v,w € V and scalars ¢, d € R, the following hold:

(1) Bilinearity:
(cu +dv, w) = c{u, w) +Hd(v, w),
(u, cv +dw) = c(u, v) +d{u, w),
(2) Symmetry: (v, w) = (w, V),

(3) Positivity: (v,v) > 0 whenever v # 0. Moreover, (v,v) = 0 if and only
if v=0.

'Definition: A vector space V equipped with a specific inner product is called |
an inner product space.
The associate@ormy of a vector v € V' is defined as

vl = (v, v). ( B, (3)/ vl zo). )

In other words, an inner product space V' that is a vector space equipped with
an additional way of pairing two vectors x and y in V' to obtain a real number,

denoted (x,y).
ve cwr fpace + “"muev Fvoaluxc‘t

" = hner ,walurt
f))aﬂﬂ

Example 2. We have known that the inner product on R" defined earlier by

satisfies these three axioms.
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Example 3. Show that for all vectors x and y in an inner product space V/,
I+ ylI* + [Ix = yII* = 2(]Ix* + |¥]1*)

X +y 1" = X+, X+y D 2 x| xep +<Y, XY
u,

= <X, X D+ <Ky <X +<y, Y
. ¥ <4 497

= nxnt + 24k g> 1 gyt

2
[l x "j“ =

-7<§ he c&»{fﬂﬂULﬂel /

§ The same vector space VV can have many different inner products.
For example, while we originally equipped R" with the standard inner product
(x,y) = > | x;y;, we can also define “other” inner products on R" as well. See
discussions below.

Example 4.(Another inner products on R") If ¢y, ..., ¢, are positive numbers,
we can define

n

<X> Y> =Cir1yr + ...+ CTpYn = Z CixiYi- (1)
i=1

This is a legitimate inner product (check this as an exercise). It is called a
weighted inner product, with weights ¢y, ..., c,.

Observe that while we can write the ordinary inner product on R” as x’y, we
can write the above weighted inner product as
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