
Lecture 15: Quick review from previous lecture

Let A be an m⇥ n matrix.

• The kernel of A is

kerA = {x 2 Rn : Ax = 0}

• The image of the matrix A is the set containing of all images of A, that is,

imgA = {Ax : x 2 Rn}

• The coimage of A is the image of its transpose, AT . It is denoted coimgA:

coimgA = imgAT = {AT
y : y 2 Rm} ⇢ Rn

• The cokernel of A is the kernel of its transpose, AT . It is denoted cokerA:

cokerA = kerAT = {w 2 Rm : AT
w = 0} ⇢ Rm

—————————————————————————————————
Today we will

• continue discussing Sec. 2.5 the kernel and image, coker, and coimg.

• discuss Sect. 3.1 Inner Products

- Lecture will be recorded -

—————————————————————————————————

• Exam (2/14, Wed.) is closed book and everyone needs to open camera.

• During the exam, you can see Exam 1 problems through
1) Canvas:

Assignments ! Exam 1

2) instructor’s share screen via Zoom (contains first couple of problems due to
the limit of screen).
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However, there is an alternate way of building a basis for coimgA.
This method will let us see a profound connection between“ imgA” and “coimgA”.

Observation.

• Performing for Gaussian elimination: (a) adding a multiple of one row to an-
other row; and (b) permuting the order of rows, we have

A �!|{z}
row operations

U (row echelon form)

• Both row operations (a) and (b) above obviously do not change the row span
(the row space of A).

Consequently, we have

Conclusion 1: The row echelon matrix U has exactly the same row space as
the original matrix A.

Conclusion 2: Therefore, we can construct a basis for the (row space)

coimgA

by bringing A to row echelon form using Gaussian elimination, and take the
nonzero rows as the basis vectors.

Example 5. The same matrix as in Example 3:

A �! U =

0

BBB@

1 2 2 3 2
0 0 1 �1 1
0 0 0 4 2
0 0 0 0 0

1

CCCA

Then a basis of coimg (A) (img (AT )) is
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Fact 6: If the rank of A is r, the basis we construct for coimgA will have r
vectors. Thus,

dim(imgA) = dim(coimgA) = r

§ cokerA
To build a basis for cokerA, solve the n-by-m homogeneous system AT

y = 0,
and set each free variable to 1, and the others to zero.

*In other words, apply the exact same procedure as for finding a basis for kerA.

Q: What is the dimension of cokerA?
It is the number of free variables in AT

y = 0. Since AT has m columns and rank
r, there are m� r free variables, hence

Fact 7: If A is an m⇥ n matrix with rank(A) = r, then

dim(cokerA) = m� r

Summary:

We can summarize what we’ve learned about the four fundamental subspaces in
the following theorem, called the Fundamental Theorem of Linear Algebra :

**Again, a very useful (and surprising) aspect of this theorem is that the column
space and row space of A have the same dimension, equal to the rank r of A.
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Summary

Let A be an m⇥ n matrix with rank(A) = r.

A �!|{z}
row operations

U (row echelon form)

dim Vector Space Basis

n-r ker(A) Solve Ax = 0, each free variable gives a basis vector
r img (A) columns of A where the pivots occur
r coimg (A) (1) columns of AT where the pivots occur

or (2) nonzero rows of U containing pivots
m-r coker (A) Solve AT

x = 0, each free variable gives a basis vector

Example 4: Consider the matrix

A =

0

@
1 1 2 3
2 1 3 4
1 0 1 1

1

A

Find a basis for kerA, imgA, coimgA, cokerA, respectively.
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3 Inner Products and Norms

3.1 Inner Products

§ Inner products in the Euclidean space Rn

Definition: If x = (x1, . . . , xn)T and y = (y1, . . . , yn)T are any two vectors in
Rn, then we define their inner product, denoted hx,yi, by:

hx,yi = x1y1 + . . . + xnyn =
nX

i=1

xiyi

Note that
hx,yi = y

T
x ( = x

T
y)

As in R2, if x = (x, y)T is a vector, then the “Pythagorean Theorem” tells us
that its length is given by

p
x2 + y2, and is denoted by

kxk =
p
x2 + y2.

Definition: We will use this to define the length of vectors in Rn and denote
the length of a vector x by

kxk =
p
hx,xi =

q
x21 + . . . + x2n

We call kxk the norm of x.

If x 6= 0, then kxk > 0. In addition, we also have

kxk = 0 , x = 0.
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Example 1. If x = (1, 0, 1)T and y = (�2, 1, 2)T , then
(1) find kxk, kyk, hx,x + 3yi and also normalize x and y.
(2) Is hx,yi = hy,xi?

Q: Based on these observation on hx,yi on Rn above, what properties do you
think they should hold for a “general” inner product.
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§ Abstract definition of general inner products

Definition: Let V be a vector space. An inner product on V is a functions
that assigns every pairing two vectors x and y in V to obtain a real number,
denoted

hx,yi,
such that for all u,v,w 2 V and scalars c, d 2 R, the following hold:

(1) Bilinearity:

hcu + dv, wi = chu, wi + dhv, wi,
hu, cv + dwi = chu, vi + dhu, wi,

(2) Symmetry: hv, wi = hw, vi,

(3) Positivity: hv,vi > 0 whenever v 6= 0. Moreover, hv,vi = 0 if and only
if v = 0.

Definition: A vector space V equipped with a specific inner product is called
an inner product space.

The associate norm of a vector v 2 V is defined as

kvk =
p
hv,vi.

In other words, an inner product space V that is a vector space equipped with
an additional way of pairing two vectors x and y in V to obtain a real number,
denoted hx,yi.

Example 2. We have known that the inner product on Rn defined earlier by

hx,yi =
nX

i=1

xiyi

satisfies these three axioms.
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Example 3. Show that for all vectors x and y in an inner product space V ,

kx + yk2 + kx� yk2 = 2(kxk2 + kyk2)

§ The same vector space V can have many di↵erent inner products.

For example, while we originally equipped Rn with the standard inner product
hx,yi =

Pn
i=1 xiyi, we can also define “other” inner products on Rn as well. See

discussions below.

Example 4.(Another inner products on Rn) If c1, . . . , cn are positive numbers,
we can define

hx,yi = c1x1y1 + . . . + cnxnyn =
nX

i=1

cixiyi. (1)

This is a legitimate inner product (check this as an exercise). It is called a
weighted inner product, with weights c1, . . . , cn.

Observe that while we can write the ordinary inner product on Rn as xT
y, we

can write the above weighted inner product as
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