Lecture 17: Quick review from previous lecture

- A a vector space V equipped with a specific inner product is called an inner product space.
- $\langle\mathbf{v}, \mathbf{w}\rangle$ is an inner product on V if the following hold:
(1) Bilinearity:

$$
\begin{aligned}
& \langle c \mathbf{u}+d \mathbf{v}, \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{w}\rangle+d\langle\mathbf{v}, \mathbf{w}\rangle, \\
& \langle\mathbf{u}, c \mathbf{v}+d \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle+d\langle\mathbf{u}, \mathbf{w}\rangle,
\end{aligned}
$$

(2) Symmetry: $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle$,
(3) Positivity: $\langle\mathbf{v}, \mathbf{v}\rangle>0$ whenever $\mathbf{v} \neq 0$. Moreover, $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}=0$.

- Every inner product gives a norm: $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$, that is, $\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle$

Today we will discuss

- Sec. 3.2 inequalities
- Lecture will be recorded -

3.2 Inequalities

§ The Cauchy-Schwarz Inequality

Let's first recall the result in \mathbb{R}^{n}.
\mathbb{R}^{n}
In \mathbb{R}^{n}, we have seen from Calculus that the dot product between two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ can be geometrically characterized by

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

where θ is the angle between the two vectors. Thus, $-\leq \cos \theta \leq 1$

$$
|\mathbf{v} \cdot \mathbf{w}| \leq\|\mathbf{v}\|\|\mathbf{w}\| .
$$

In fact, this inequality also holds in an inner product space.
Fact 1: Let V be an inner product space. Then the following CauchySchwarz inequality holds:

$$
|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V
$$

Thus, given any inner product, we can use the quotient

$$
\cos \theta \underbrace{=}_{\text {define }} \frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

to "define" the "angle" θ between the two vectors \mathbf{v}, \mathbf{w} in the vector space V.

To see this, we know this ratio lies between -1 and 1 , and defining the angle θ in this way makes sense.

Example 1. Recall that $C^{0}=C^{0}(I)$ denote the vector space of continuous functions on an interval I. We consider the inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Let $f(x)=\cos (x)$ and $g(x)=\sin (x)$.
(1) Consider $C^{0}[0, \pi]$, compute the inner product between f and g. Also compute their angle θ.

$$
\begin{gathered}
\langle f, g\rangle=\int_{0}^{\pi} f g d x=\int_{0}^{\pi} \cos x \sin x d x=\left.\frac{\sin ^{2} x}{2}\right|_{0} ^{\pi}=0 . \\
\cos \theta=\frac{\langle f, g\rangle}{\|f\|\|g\|}=\frac{0}{\|f\|\|g\|}=0 \\
\theta=\frac{\pi}{2}
\end{gathered}
$$

(2) Consider $C^{0}[0, \pi / 2]$, compute the inner product between f and g. Also com-

$$
\begin{aligned}
& \text { pate their angle } \theta \text {. } \\
& \langle f, g\rangle=\int_{0}^{\pi / 2} \cos x \sin x d x=\left.\frac{\sin ^{2} x}{2}\right|_{0} ^{\pi / 2}=\frac{1}{2} \text {. } \\
& \begin{array}{ll}
\|f\|^{2}=\langle f, f\rangle=\int_{0}^{\pi / 2} \cos ^{2} x d x=\int_{0}^{\pi / 2} \frac{1+\cos (2 x)}{2} d x .
\end{array} \\
& \text { seminary } \int^{2}=\int_{0}^{\pi / 2} \sin ^{2} x d x=\int^{\pi / 2} \frac{1-\cos (2 x)}{2} d=\frac{x}{2}+\left.\frac{\sin (2 x)}{4}\right|_{0} ^{\pi / 2} \\
& \begin{aligned}
&\|g\|^{2}=\int_{0}^{\pi / 2} \sin ^{2} x d x=\int_{0}^{\pi / 2} \frac{1-\cos (2 x)}{2} d x=\pi / 4, ~ \\
&=\pi /\|g\|=\sqrt{\pi / 4}
\end{aligned} \\
& \cos \theta=\frac{\langle t, g\rangle}{\|f\|\|g\|}=\frac{\frac{1}{2}}{\pi / 4}=\frac{2}{\pi} \text {. Then } \theta=\cos ^{-1}\left(\frac{2}{\pi}\right)
\end{aligned}
$$

*Note that the choice of interval $([0, \pi]$ versus $[0, \pi / 2])$ changes the inner product between functions.

In \mathbb{R}^{2}, dot produce

Definition: Let V be an inner product space. We call $\mathbf{x}, \mathbf{y} \in V$ are orthogonat (perpendicular) if

In $C^{0}[0, \pi]$,

$$
\langle\mathbf{x}, \mathbf{y}\rangle=0 .
$$

In Example 1(1), we saw that $f(x)=\cos (x)$ and $g(x)=\sin (x)$ satisfy

$$
\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) d x=\int_{0}^{\pi} \cos (x) \sin (x) d x=0
$$

Thus, we say f and g are orthogonal to each other on the interval $[0, \pi]$. However, they are NOT orthogonal on the interval $[0, \pi / 2]$, see Example 1(2).

$$
\geqslant C^{\circ}([0, \pi / 2])
$$

Fact 2: A vector \mathbf{w} in \mathbb{R}^{n} is orthogonal to vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ if and only if \mathbf{w} is in the cokernel of the matrix $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ (i.e. in the kernel of A^{T}) Here we consider usual mien product (Dot product).
[To see this:]

$$
\Leftrightarrow\left[\begin{array}{c}
v_{1}^{\top} \omega=0 \\
\vdots \\
v_{k}^{\top} \omega=0
\end{array} \Leftrightarrow\left[\begin{array}{c}
v_{1}^{\top} \\
v_{2}^{\top} \\
\vdots \\
v_{k}^{\top}
\end{array}\right]_{k \times n} w=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \Leftrightarrow A^{\top} w=\overrightarrow{0}\right.
$$

Example 2. Suppose we want to find a vector \mathbf{w} that is orthogonal to $\mathbf{v}_{1}=$ $(1,1,0)^{T}$ and $\mathbf{v}_{2}=(2,1,-2)^{T}$ under usual inner product.

$$
\begin{aligned}
& \left\langle v_{1}, w\right\rangle=0,\left\langle v_{2}, w\right\rangle=0 \text {. Let } w=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) . \\
& {\left[\begin{array}{l}
v_{1}^{\top} \\
v_{2}^{\top}
\end{array}\right] w=\left[\begin{array}{l}
0 \\
0
\end{array}\right],(\text { homogeneous l. syrtan) }} \\
& A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & -2
\end{array}\right) \xrightarrow{(2)-20}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & -2
\end{array}\right) . \\
& \begin{array}{l}
\text { (2) } b=-2 c \\
\text { (1) } a=-b=2 C .
\end{array} \quad w=\left(\begin{array}{c}
2 C \\
-2 c \\
c
\end{array}\right), \quad \forall c \in \mathbb{R} .
\end{aligned}
$$

[Proof of the Cauchy-Schwarz inequality:] $(|\langle x, y\rangle| \leq\|x\|\|y\|)$.
suppose $y \neq 0$ we consider

$$
\begin{aligned}
&\|x-c y\|^{2}=\langle x-c y, x-c y\rangle \\
& \stackrel{(1)}{=}\langle x, y\rangle=\langle y, \stackrel{2}{=} \\
& \stackrel{(2)}{=}\|x\|^{2}-2 c\langle x, y\rangle-c\langle y, x\rangle+c^{2}\langle y, y\rangle \\
&
\end{aligned}
$$

Taking $c=\frac{\langle x, y\rangle}{\|y\|^{2}}$. Then

$$
\begin{aligned}
0 \leqslant\|x-c y\|^{2} & =\|x\|^{2}-2 \frac{\langle x, y\rangle}{\|y\|^{2}}\langle x, y\rangle+\frac{\langle x, y\rangle^{2}}{\|y\|^{2}} \| y x^{2} \\
& =\|x\|^{2}-2 \frac{\langle x, y\rangle^{2}}{\|y\|^{2}}+\frac{\langle x, y\rangle^{2}}{\|y\|^{2}} \\
\Rightarrow \frac{\langle x, y\rangle^{2}}{\|y\|^{2}} \leq\|x\|^{2} & \Rightarrow\left\langle x \|^{2}-\frac{\langle x, y\rangle^{2}}{\|y\|^{2}}\right. \\
& \Rightarrow|x, y\rangle^{2} \leq\|x\|^{2}\|y\|^{2} \\
& \Rightarrow|x, y\rangle \mid \leq\|x\|\|y\|
\end{aligned}
$$

Q: In Cauchy-Schwarz inequality $|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\|$, when does equality hold? $V=C W$, for scalar $c \in \mathbb{R}$.

§ The Triangle Inequality

Fact 3: Let V be an inner product space. Then the following Triangle Inequality holds:

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V .
$$

We skip the proof and refer it to the textbook.
$[$ prot relies on Canchy - Schwarz inequality and
Remark: In the triangle inequality, $\begin{aligned} & \left.\text { expand ing }\|V+w\|^{2}\right]\end{aligned}$

$$
\mathbf{v}=c \mathbf{w} \text { and } c \geq 0
$$

3.3 Norms

We have known that every inner product gives rise to a norm $(\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle})$ that can be used to measure the magnitude or length of the elements on an inner product space.

Let's recall that some properties satisfied by this norm, $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$, on an inner product space: $\quad \boldsymbol{c}^{(1)}\|c v\|^{2}=\langle c v, c v\rangle=c^{2}\langle v, v\rangle=c^{2}\|v\|^{2}$
$(1)\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$
(2) $\|\mathbf{v}\| \geq 0$, and $\|\mathbf{v}\|=0$ iff $\mathbf{v}=0$.
(3) The triangle inequality:

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|
$$

There are other natural measures of the "size" of a vector that satisfy these same three conditions, but that cannet be defined in terms of an inner product.

For example,
(1) on \mathbb{R}^{n} we can measure the size of a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ by the sum of absolute values of its entries:

$$
\sum_{i=1}^{n}\left|v_{i}\right|
$$

(2) on $C^{0}([a, b])$, we can measure the size of a continuous function f by the integral of its absolute value:

$$
\int_{a}^{b}|f(x)| d x
$$

Neither of these quantities can be defined in terms of an inner product; but they are still useful notions of the "size of vectors".

Definition: A norm on a vector space V assigns a non-negative real number $\|\mathbf{v}\|$ to each vector $\mathbf{v} \in V$, such that for every $\mathbf{v}, \mathbf{w} \in V$ and $c \in \mathbb{R}$, the following axioms holds:
(1) Positivity: $\|\mathbf{v}\| \geq 0 ;\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=0$.
(2) Homogeneity: $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.
(3) Triangle inequality: $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.

$$
\|x\|=\sqrt{(x, x)}
$$

Remark: We checked that when "a norm is induced from an inner product, these three conditions are satisfied automatically". But in general, a norm need NOT arise from an inner product on V.

1. p norm on \mathbb{R}^{n}. We've already seen several on \mathbb{R}^{n} and $C^{0}([a, b])$.

Example 1. We have seen that $\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$ is the norm induced from the dot product on \mathbb{R}^{n}.

Example 2. $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. Let's check the three conditions to make sure this is a valid norm.

$T 0$

be
continued !

