Lecture 18: Quick review from previous lecture

In an inner product space V,

• Cauchy-Schwarz inequality holds:

 $|\langle \mathbf{v}, \mathbf{w} \rangle| \le ||\mathbf{v}|| ||\mathbf{w}||$ for all $\mathbf{v}, \mathbf{w} \in V$.

• Triangle Inequality holds:

 $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.

- We call $\mathbf{x}, \mathbf{y} \in V$ are orthogonal (perpendicular) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- Every inner product gives a norm: $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$, that is, $\|\mathbf{x}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle$

Today we will discuss

 \bullet Sec. 3.3 norms

- Lecture will be recorded -

• The University provides free **peer tutor service**, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

Definition: A norm on a vector space V assigns a non-negative real number $||\mathbf{v}||$ to each vector $\mathbf{v} \in V$, such that for every \mathbf{v} , $\mathbf{w} \in V$ and $c \in \mathbb{R}$, the following axioms holds:

- (1) **Positivity:** $\|\mathbf{v}\| \ge 0$; $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$.
- (2) **Homogeneity:** $||c\mathbf{v}|| = |c|||\mathbf{v}||.$
- (3) Triangle inequality: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.

Remark: We checked that when "a norm is induced from an inner product, these three conditions are satisfied automatically". But in general, a norm need NOT arise from an inner product on V.

§ 1. *p* norm on \mathbb{R}^n . We've already seen several on \mathbb{R}^n and $C^0([a, b])$. **Example 1.** We have seen that $\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$ is the norm induced from the usual inner product (dot product) on \mathbb{R}^n .

Example 2. $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|^{\bullet}$ Let's check the three conditions to make sure this is a valid norm.

$$\begin{array}{c} 1 \quad \underbrace{\text{positivity}}_{i=1}^{\infty} ||\mathbf{x}_{i}||_{i} = \sum_{i=1}^{\infty} |\mathbf{x}_{i}|| \geq 0 \quad ; \quad \|\mathbf{x}_{i}\|_{i} = 0 \quad (\Rightarrow) \quad \|\mathbf{x}_{i}\|_{i} = 0, \text{isign} \\ \quad (\Rightarrow) \quad \mathbf{x} = 0 \\ 2 \quad \underbrace{\text{Homogenenty}}_{i=1}^{\infty} ||\mathbf{c}\mathbf{x}_{i}||_{i} = \sum_{i=1}^{\infty} ||\mathbf{c}\mathbf{x}_{i}|| = |\mathbf{c}|(\sum_{i=1}^{\infty} |\mathbf{x}_{i}|)| = |\mathbf{c}| \mid \|\mathbf{x}_{i}\|_{i} \\ 3 \quad \underbrace{\text{Triangle megnolity}}_{||\mathbf{x} + \mathbf{y}||_{i} = \sum_{i=1}^{\infty} ||\mathbf{x}_{i} + \mathbf{y}_{i}|| \leq \sum_{i=1}^{\infty} (|\mathbf{x}_{i}| + |\mathbf{y}_{i}|) = \sum_{i=1}^{\infty} |\mathbf{x}_{i}| + \frac{2}{2}|\mathbf{y}_{i}| \\ \quad ||\mathbf{x} + \mathbf{y}||_{i} = \sum_{i=1}^{\infty} ||\mathbf{x}_{i} + \mathbf{y}_{i}|| \leq \sum_{i=1}^{\infty} (|\mathbf{x}_{i}| + |\mathbf{y}_{i}|) = \sum_{i=1}^{\infty} ||\mathbf{x}_{i}| + \frac{2}{2}|\mathbf{y}_{i}| \\ \quad = ||\mathbf{x}_{i}|_{i} + ||\mathbf{y}_{i}|_{i} \\ \quad \text{Then it's a norm} \\ \underbrace{\text{MATH 4242-Week 7-2}}_{i=1} \quad \begin{array}{c} 1 \\ \text{Spring 2021} \end{array}$$

There is a generalization of these norms:

Definition: If $p \ge 1$, we define:

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

This is often called the p **norm**.

Example 3. (1) Compute the 3 norm of $\mathbf{x} = (2, -1, 3)^T$. $\| \times \|_3 = (|2|^3 + |-||^3 + |3|^3)^{\frac{1}{3}}$ $= (\$ + | + 27)^{\frac{1}{3}} = 36^{\frac{1}{3}}$ (2) Compute the *p* norm of $\mathbf{x} = (1, ..., 1)^T$ in \mathbb{R}^n . $\| \times \|_p = (|P + ... + |P|)^{\frac{1}{p}} = \underline{n}^{\frac{1}{p}}$ § 2. L^p norm on $C^0[a, b]$ (the vector space of continuous functions). Definition: We define the L^p norms on $C^0([a, b])$, for $p \ge 1$:

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$

Example 4. Compute the 3/2 norm of $f(x) = x^2$ on [-1, 1].

$$\| + \|_{\frac{3}{2}} = \left(\int_{-1}^{1} |f|^{\frac{3}{2}} dx \right)^{\frac{2}{3}} = \left(\int_{-1}^{1} |x|^{\frac{3}{2}} dx \right)^{\frac{3}{3}} = \left(\int_{-1}^{1} |x|^{\frac{3}{2}} dx \right)^{\frac{3}{3}} = \left(2 \int_{0}^{1} |x|^{\frac{3}{2}} dx \right)^{\frac{3}{3}}$$
$$= \left(2 \int_{0}^{1} |x|^{\frac{3}{2}} dx \right)^{\frac{3}{3}} = \left(\frac{1}{2} \int_{0}^{\frac{3}{3}} dx \right)^{\frac{3}$$

Spring 2021

§ 3. When $p = \infty$.

when $p = \infty$, we define ∞ norm on \mathbb{R}^n by: $\mathbf{x} = (x_1, \dots, x_n)$, $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$

Similarly,

when
$$p = \infty$$
, we define L^{∞} norm on $C^0([a, b])$ by:
$$\|f\|_{\infty} = \max_{x \in [a, b]} |f(x)|$$

Example 5. (1) If $\mathbf{x} = (1, 2, -7)^T$, then $\|\mathbf{x}\|_{\infty} = \frac{7}{100}$ (2) If $f(x) = 2x^2 - 2$, then on [-2, 1], $\|f\|_{\infty} = \frac{6}{|f(x_0)|}$

Example 6. Characterize the unit sphere $\{x \in \mathbb{R}^2 : \|x\| \in \mathbb{R}^2 \}$ of \mathbb{R}^2 with respect to the following norms:

§4. Matrix Norms.

If $\|\mathbf{v}\|$ is any norm on \mathbb{R}^n , it induces a "natural" norm on $\mathcal{M}_{n \times n}$, the vector space of *n*-by-*n* matrices.

Definition: The **matrix norm** (with respect to the norm $\|\cdot\|$ on \mathbb{R}^n) is defined as follows. If A is any *n*-by-*n* matrix, then

$$||A|| = \max\{||A\mathbf{u}|| : ||\mathbf{u}|| = 1\}$$

Proof. To show it is a norm, see pages 153–154 in the book for the proof.

* In other words, ||A|| is the maximum amount that A can change the norm of a unit vector **u** (one with $||\mathbf{u}|| = 1$) when we apply A to **u**.

The book calls ||A|| above the **natural matrix norm** associated to the vector norm $||\mathbf{v}||$. It is also often called the **operator norm** of A.

Example 7. Consider the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
 which maps \mathbb{R}^2 to \mathbb{R}^2 .
Determine the matrix norm with respect to (w.r.t.) the norms $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$.
We depict the action of A on the unit balls of \mathbb{R}^2 w.r.t. norms $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$.
• (1-norm) $\|\mathbf{x}\|_1 = \sum_{i=1}^{2} |x_i|$
 $A\binom{i}{0} = \binom{i}{2}$
• (2-norm) $\|\mathbf{x}\|_2 = (\sum_{i=1}^{2} |x_i|^2)^{1/2}$
• (2-norm) $\|\mathbf{x}\|_2 = (\sum_{i=1}^{2} |x_i|^2)^{1/2}$
• (∞-norm) $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le 2} |x_i|$

[To see these:]

70

be continued!

The 2^{nd} inequality implies that

Fact 2: If A is a square matrix and k is a positive integer, then

$$\|A^{k}\| \leq \|A\|^{k}.$$

$$\underline{f_{act}} | (2)$$

$$\underline{k = 3}: \|A^{3}\| = \|A\underline{A}^{2}\| \leq \|A\| \|A\| \|A^{2}\|$$

$$\leq \|A\| \|A\| \|A\| = \|A\|^{3}$$

$$\leq \|A\| \|A\| \|A\| = \|A\|^{3}$$

$$\underline{k = 4}: \|A^{4}\| \leq \|A\|^{4}$$

$$\underline{f_{act}} = \|A\|^{4}$$
Spring 2021

Example 8.

a) If ||A|| = 3 and $||\mathbf{x}|| = 4$, what is the maximum possible value for $||A\mathbf{x}||$? Fact (., (.)), $||A \times || \leq ||A|| ||x||$ $= 3 \cdot 4 = /2$ $= 3 \cdot 4 = -2$ $= 3 \cdot$

§ 5. Distance.

Every norms defines a **distance** between vector space elements, that is,

$$d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|.$$

It satisfies

1. Symmetry:
$$d(\mathbf{v}, \mathbf{w}) = d(\mathbf{w}, \mathbf{v})$$

- 2. Positivity: $d(\mathbf{v}, \mathbf{w}) = 0 \Leftrightarrow \mathbf{v} = \mathbf{w}$.
- 3. Triangle inequality: $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{z}) + d(\mathbf{z}, \mathbf{w})$