Lecture 18: Quick review from previous lecture
In an inner product space V,

- Cauchy-Schwarz inequality holds:

$$
|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V .
$$

- Triangle Inequality holds:

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\| \text { for all } \mathbf{v}, \mathbf{w} \in V .
$$

- We call $\mathbf{x}, \mathbf{y} \in V$ are orthogonal (perpendicular) if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
- Every inner product gives a norm: $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$, that is, $\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle$

Today we will discuss

- Sec. 3.3 norms

- Lecture will be recorded -

- The University provides free peer tutor service, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

Definition: A norm on a vector space V assigns a non-negative real number $\|\mathbf{v}\|$ to each vector $\mathbf{v} \in V$, such that for every $\mathbf{v}, \mathbf{w} \in V$ and $c \in \mathbb{R}$, the following axioms holds:
(1) Positivity: $\|\mathbf{v}\| \geq 0 ;\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=0$.
(2) Homogeneity: $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.
(3) Triangle inequality: $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.

Remark: We checked that when "a norm is induced from an inner product, these three conditions are satisfied automatically". But in general, a norm need NOT arise from an inner product on V.
\S 1. p norm on \mathbb{R}^{n}. We've already seen several on \mathbb{R}^{n} and $C^{0}([a, b])$. Example 1. We have seen that $\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$ is the normind from

Example 2. $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|^{\mathbf{0}}$. Let's check the three conditions to make sure this is a valid norm.

1. positivity:

$$
\begin{aligned}
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \geq 0 ;\|x\|_{1}=0 & \Leftrightarrow\left|x_{i}\right|=0,1 \leq i \leq n \\
& \Leftrightarrow x=0
\end{aligned}
$$

2. Homogeneity: $\quad\|c x\|_{1}=\sum_{i=1}^{M}\left|c x_{i}\right|=|c|\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)=|c|\|x\|_{0}$
3. Triangle mequaliay: $x, y \in \mathbb{R}^{n}, x=\left(x_{1}, \ldots, x_{n}\right)^{\top}, y=\left(y_{1}, \ldots, y_{1}\right)^{\top}$

$$
\begin{aligned}
\|x+y\|_{1}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right| \leq \sum_{i=1}^{n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right) & =\sum_{i=1}^{n}\left|x_{i}\right|+\sum_{i=1}^{n}\left|y_{i}\right| \\
& =\|x\|_{1}+\|y\|_{0}
\end{aligned}
$$

Then it's a norm.

There is a generalization of these norms:
Definition: If $p \geq 1$, we define:

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

This is often called the p norm.

Example 3. (1) Compute the 3 norm of $\mathbf{x}=(2,-1,3)^{T}$.

$$
\begin{aligned}
\|\times\|_{3} & =\left(|2|^{3}+1-\left.1\right|^{3}+131^{3}\right)^{1 / 3} \\
& =(8+1+27)^{1 / 3}=36^{1 / 3}
\end{aligned}
$$

(2) Compute the p norm of $\mathbf{x}=(1, \ldots, 1)^{T}$ in \mathbb{R}^{n}.

$$
\|x\|_{p}=\left(1^{p}+\cdots+1^{p}\right)^{1 / p}=n^{1 / p}
$$

\S 2. L^{p} norm on $C^{0}[a, b]$ (the vector space of continuous functions).
Definition: We define the L^{p} norms on $C^{0}([a, b])$, for $p \geq 1$:

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}
$$

Example 4. Compute the $3 / 2$ norm of $f(x)=x^{2}$ on $[-1,1]$.

$$
\begin{aligned}
\|f\|_{3 / 2} & =\left(\int_{-1}^{1}|f|^{3 / 2} d x\right)^{2 / 3}=\left(\int_{-1}^{1}\left|x^{2}\right|^{3 / 2} d x\right)^{2 / 3}=\left(\int_{-1}^{1}|x|^{3} d x\right)^{2 / 3} \\
= & \left(2 \int_{0}^{1} x^{3} d x\right)^{2 / 3} \\
= & \left(\left.\frac{2}{4} x^{4}\right|_{0} ^{1}\right)^{2 / 3}=\left(\frac{1}{2}\right)^{2 / 3}=\frac{2^{-2 / 3}}{x} x
\end{aligned}
$$

§ 3. When $p=\infty$.
when $p=\infty$, we define ∞ norm on \mathbb{R}^{n} by: $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$,

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Similarly,
when $p=\infty$, we define L^{∞} norm on $C^{0}([a, b])$ by:

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

Example 5. (1) If $\mathbf{x}=(1,2,-7)^{T}$, then $\|\mathrm{x}\|_{\infty}=\mathbf{7}$
$|11,|2|,|-7|$

$\frac{6}{f^{\prime \prime}(-2) \mid}$

Example 6. Characterize the unit sphere $\left\{x \in \mathbb{R}^{2}:\|x\| 1\right\}$ of \mathbb{R}^{2} with respect to the following norms:

$$
\begin{aligned}
& \|\mathbf{x}\|_{1}=\sum_{i=1}^{2}\left|x_{i}\right| \\
& S_{1}=\left\{x \mid\|x\|_{1}=1\right\} \\
& \left|x_{1}\right|+\left|x_{2}\right|=1 . \\
& \|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{2}\left|x_{i}\right|^{2}\right)^{1 / 2} \\
& \left.S_{2}=\overline{\{x} \mid\|x\|_{2}=1\right\} . \\
& \|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq 2}\left|x_{i}\right| \\
& S_{\infty}=\left\{\times \mid \max \left\{\left|x_{1}\right|,\left|x_{2}\right| \mid=1\right\} .\right.
\end{aligned}
$$

§ 4. Matrix Norms.

If $\|\mathbf{v}\|$ is any norm on \mathbb{R}^{n}, it induces a "natural" norm on $\mathcal{M}_{n \times n}$, the vector space of n-by- n matrices.

Definition: The matrix norm (with respect to the norm $\|\cdot\|$ on \mathbb{R}^{n}) is defined as follows. If A is any n-by- n matrix, then

$$
\|A\|=\max \{\|A \mathbf{u}\|:\|\mathbf{u}\|=1\}
$$

Proof. To show it is a norm, see pages 153-154 in the book for the proof.

* In other words, $\|A\|$ is the maximum amount that A can change the norm of a unit vector \mathbf{u} (one with $\|\mathbf{u}\|=1$) when we apply A to \mathbf{u}.

The book calls $\|A\|$ above the natural matrix norm associated to the vector norm $\|\mathbf{v}\|$. It is also often called the operator norm of A.

Example 7. Consider the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$ which maps \mathbb{R}^{2} to \mathbb{R}^{2}.
Determine the matrix norm with respect to (w.r.t.) the norms $\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$.
We depict the action of A on the unit balls of \mathbb{R}^{2} w.r.t. norms $\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$.

- (1-norm) $\|\mathbf{x}\|_{1} \bar{x}_{2} \sum_{i=1}^{2}\left|x_{i}\right|$

$$
\begin{aligned}
& A\binom{1}{0}=\binom{1}{0} \\
& A\binom{0}{1}=\binom{2}{2}
\end{aligned}
$$

- (∞-norm) $\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq 2}\left|x_{i}\right|$

*In figures above, dashed lines mark the vectors that are amplified most by A in each norm.

Fact 1:
(1) $\|A \mathbf{v}\| \leq\|A\|\|\mathbf{v}\|, \quad$ for all $n \times n$ matrices $A, \mathbf{v} \in \mathbb{R}^{n}$,
(2) $\|A B\| \leq\|A\|\|B\|, \quad$ for all $n \times n$ matrices A and B.
[To see these:]
To be continued!

The $2^{\text {nd }}$ inequality implies that
Fact 2: If A is a square matrix and k is a positive integer, then

$$
\begin{aligned}
\left\|A^{3}\right\| \leq\|A\|^{k} \text {. Fact } 1(2) \\
\underline{k=3:} \quad\left\|A^{3}\right\|=\| A \underline{\underline{A^{2}} \|} \begin{aligned}
\| & \leq\|A\| A^{2} \| \\
& \leq\|A\| A\|A\|=\|A\|^{3}
\end{aligned}
\end{aligned}
$$

$$
\underline{k=4:}\left\|A^{4}\right\| \leq\|A\|^{4} .
$$

Example 8.

a) If $\|A\|=3$ and $\|\mathrm{x}\|=4$, what is the maximum possible value for $\|A \mathrm{x}\|$?

$$
\text { Fact 1.(1), } \begin{aligned}
\|A \times\| & \leq\|A\|\|x\| \\
& =3 \cdot 4=12
\end{aligned}
$$

b) Suppose that the $n \times n$ matrix A has norm $\|A\|=\lambda$, where λ is a scalar number satisfying $0<\lambda<1$. Find the limit of $\left\|A^{k}\right\|$ as k goes to ∞ (namely, find the value of $\left.\lim _{k \rightarrow \infty}\left\|\overrightarrow{A^{k}}\right\|\right)$ Fact 2

§ 5. Distance.

Every norms defines a distance between vector space elements, that is,

$$
d(\mathbf{v}, \mathbf{w})=\|\mathbf{v}-\mathbf{w}\| .
$$

It satisfies

1. Symmetry: $d(\mathbf{v}, \mathbf{w})=d(\mathbf{w}, \mathbf{v})$
2. Positivity: $d(\mathbf{v}, \mathbf{w})=0 \Leftrightarrow \mathbf{v}=\mathbf{w}$.
3. Triangle inequality: $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{z})+d(\mathbf{z}, \mathbf{w})$
