Lecture 19: Quick review from previous lecture

- If $p \geq 1$, we define the p norm by

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

When $p=\infty$, we define ∞ norm by

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

- If $p \geq 1$, we define the L^{p} norm on $C^{0}([a, b])$ by

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}
$$

When $p=\infty$, we define L^{∞} norm on $C^{0}([a, b])$ by

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

- A is any n-by- n matrix. We define the natural matrix norm (operator norm) of A by

$$
\|A\|=\max \{\|A \mathbf{u}\|:\|\mathbf{u}\|=1\}
$$

Today we will discuss

- Sec. 3.4-3.5 Positive Definite Matrices

- Lecture will be recorded -

- HW6 due today at 6pm.

Fact 1:
(1) $\|A \mathbf{v}\| \leq\|A\|\|\mathbf{v}\|, \quad$ for all $n \times n$ matrices $A, \mathbf{v} \in \mathbb{R}^{n}$,
(2) $\|A B\| \leq\|A\|\|B\|, \quad$ for all $n \times n$ matrices A and B.
[To see these:] (1) $v \neq 0$. Let $w=\frac{v}{\|v\|}$ (unit vector) $(\|w\|=1)$.
$\|A w\| \leq \max \{\|A u\| \mid\|u\|=1\}=\|A\|$.
Then $\|A w\| \leq\|A\|$.
$\left\|A \frac{v}{\|v\|}\right\| \leq\|A\|$.
$\frac{1}{\|v\|}\|A v\| \leq\|A\|$. implies $\|A v\| \leq\|A\|\|v\|$
(2) Taking u with $\|u\|=1$.

$$
\|A B u\|=\|A(B u)\| \stackrel{\text { (i) }}{\leq}\|A\|\|B u\| \leq\|A\|\|B\|\|u\| \text {. } \| \text {. } \| \text {. } \| A
$$

$$
\|n\|=1\|A\|\|B\|
$$

$\max \{\|A B u\| \mid\|u\|=1\} \leq\|A\|\|B\|$.
$\|A B\|$
§ 5. Distance.
Every norms defines a distance between vector space elements, that is,

$$
d(\mathbf{v}, \mathbf{w})=\|\mathbf{v}-\mathbf{w}\| .
$$

It satisfies

1. Symmetry: $d(\mathbf{v}, \mathbf{w})=d(\mathbf{w}, \mathbf{v})$
2. Positivity: $d(\mathbf{v}, \mathbf{w})=0 \Leftrightarrow \mathbf{v}=\mathbf{w}$.
3. Triangle inequality: $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{z})+d(\mathbf{z}, \mathbf{w})$

Example 9. Suppose A is a n-by- n matrix. Suppose that $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$ is a vector in \mathbb{R}^{n}. Recall that the 2 norm is defined as

$$
\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

Find the operator norm of $A=\left(\begin{array}{cc}3 & 0 \\ 0 & -5\end{array}\right)$. That is, find $\|A\|_{2}=\max \left\{\|A \mathbf{u}\|_{2}\right.$: $\left.\|\mathbf{u}\|_{2}=1\right\}$. Let $u=(a, b)^{\top}$ with $\|u\|_{2}=1 \cdot a^{2}+b^{2}=1$.

$$
A u=\binom{3 a}{-5 b}
$$

$$
\|A u\|^{2}=(3 a)^{2}+(-5 b)^{2}
$$

$$
=9 a^{2}+25 b^{2}
$$

$$
=9 a^{2}+25\left(1-a^{2}\right)
$$

$$
=-16 a^{2}+25
$$

Find $\max \|A u\| \|_{2}$ (is the same as find $\max f(a)$)

$$
f(a)=-16 a^{2}+25,-1 \leq a \leq 1
$$

critical pt: $f^{\prime}(a)=0 \Rightarrow-32 a=0 \Rightarrow a=0$

$$
f(0)=25(V)
$$

Gid pts: $f(1)=9$. Then

$$
A=\left[\begin{array}{ll}
3 & 0 \\
0 & -5
\end{array}\right]
$$

$$
\begin{aligned}
& A\binom{1}{0}=\binom{3}{0} \\
& A\binom{0}{1}=\binom{0}{-5}
\end{aligned}
$$

$$
f(-1)
$$

$\max \|A u\|_{2}=\sqrt{25}$ $=5$

$$
A\binom{0}{1}=\binom{0}{-5}
$$

vector amplified most b A.
Fact $D=\left[\begin{array}{ll}d_{1} & 0 \\ 0 & d_{n}\end{array}\right]$

$$
\therefore^{3}\|D\|_{2}=\max _{1 \leqslant \leq n}\left\{\left|d_{d}\right|\right\}^{20 a n}
$$

3.4-3.5 Positive Definite Matrices

We have seen that the following inner products on \mathbb{R}^{n} :

- standard inner product $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}=\mathbf{x}^{T} I \mathbf{y}$
- For $c_{1}>0, \cdots, c_{n}>0,\langle\mathbf{x}, \mathbf{y}\rangle=c_{1} x_{1} y_{1}+\ldots+c_{n} x_{n} y_{n}=\mathbf{x}^{T} D \mathbf{y}$ where $D=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$.
- For nonsingular matrix $A,\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} A^{T} A \mathbf{y}$ is also an inner product

They all have been of the following form:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \underbrace{K}_{\text {symmetric }} \mathbf{y}
$$

for some symmetric matrix K.

Q: Are there any other types of inner products on \mathbb{R}^{n} ?
Ans: In fact, all inner products on \mathbb{R}^{n} are of the form $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} K \mathbf{y}$, for some symmetric matrix K.

However, it is not true that any symmetric matrix K can define an inner product! Only a special type of matrix K can do this, that is,

Definition: An $n \times n$ matrix K is called positive definite if

1) it is symmetric, $K^{T}=K$, and satisfies
2) the positivity condition

$$
\mathbf{x}^{T} K \mathbf{x}>0 \quad \text { for all } \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n} .
$$

We write " $K>0$ " to mean that K is positive definite matrix.

Warning: The condition $K>0$ does NOT mean that all the entries of K are positive.

Fact 1: Every inner product on \mathbb{R}^{n} is given by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} K \mathbf{y} \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

where K is a symmetric, positive definite $n \times n$ matrix.

Definition: For a matrix K, the function

$$
q(\mathbf{x})=\mathbf{x}^{T} K \mathbf{x}
$$

is called a quadratic form.
Moreover, quadratic form is called positive-definite if $q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$.
Example 1. $A=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$ is positive definite. We denote it as $A>0$.
(1) $A=A^{\top}$
(2)

$$
\begin{aligned}
& q(x)=x^{\top} A x=\left(x_{1} x_{2}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right)\binom{x_{1}}{x_{2}}=3 x_{1}^{2}+5 x_{2}^{2} \\
& >0 \text { if } x \neq 0
\end{aligned} \quad \begin{aligned}
& \text { Then } \Rightarrow 0
\end{aligned}
$$

Example 2. Check if

$$
K=\left(\begin{array}{cc}
2 & -1 \\
-1 & 5
\end{array}\right)
$$

is positive definite.

$$
\text { (1) } K=K^{\top}
$$

(2)

$$
\begin{aligned}
q(x)=x^{\top} K x & =\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 5
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =2 x_{1}^{2}-2 x_{1} x_{2}+5 x_{2}^{2} \\
& =\left(x_{1}-x_{2}\right)^{2}+x_{1}^{2}+4 x_{2}^{2} \\
& >0 \quad \text { if } x \neq 0
\end{aligned}
$$

Example 3. Check if

$$
A=\left(\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right)
$$

(NO)
is positive definite. (1) $A=A^{\top}$

$$
\begin{aligned}
& \text { (2) } q(x)=x^{7} A x=x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2} . \\
& \text { Talking } x=\binom{1}{-1} \cdot q\binom{1}{-1}=1-6+2<0
\end{aligned}
$$

Warning: positive definite matrices may have negative entries, while matrices with all positive entries may not always be

$$
6 \times 3
$$

\S The positive definite 2×2 matrices.
Q: How can we tell if a matrix K is positive definite? We obviously can't evaluate $\mathbf{x}^{T} K \mathbf{x}$ for all vectors \mathbf{x} every time!

Fact 2: Any symmetric 2-by-2 matrix A :

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

is positive definite if and only if

$$
a>0 \text { and } \stackrel{-}{a c-b^{2}>0}
$$

Revisit Example 2. $K=\left(\begin{array}{cc}2\rfloor & -1 \\ -1 & 5\end{array}\right)$

$$
\begin{aligned}
& a_{11}>0 \\
& \operatorname{det} K=2.5-(-1)^{2}>0 .
\end{aligned}
$$

Then $k>0$.

§ The positive definite $n \times n$ (any square size) matrices.

Q: Is there a simple characterization for positive definite matrices of any size?

Recall (page 45-47): Any regular symmetric matrix A can be factored in the form

$A=L D L^{T}$

where L is lower unitriangular and D is diagonal.
(*This factorization is computed via "adding/subtracting row to/from other row" only, no permuting row operation.)

Fact 3: An n-by- n matrix A is positive definite if and only if it is:
(1) symmetric;
(2) regular, hence $A=L D L^{T}$, and
(3) D has all positive diagonal entries (ie. A has positive pivots).

It immediately implies that
Fact 4: If a matrix A is positive definite, then it is nonsingular.

=get

[To see this: Since A has only positive pivots, $\underline{\operatorname{det} A} \neq 0$ so A is nonsingular.]

Example 4. Determine if the following matrix is positive definite:
a) $A=\left(\begin{array}{rrr}1 & -1 & 2 \\ -1 & 3 & -4 \\ 2 & -4 & 5\end{array}\right) \xrightarrow[(3)-20]{(2)+(1)}\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & -2 & 1\end{array}\right) \xrightarrow{(3)+(2)}\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & 0 & -1\end{array}\right)=U$

Then $D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right)$
So A is NT

Definition: If a matrix A satisfies $\mathbf{x}^{T} A \mathbf{x} \geq 0$ for all vectors \mathbf{x}, it is called positive semidefinite.

Remark: Every positive definite matrix is also positive semidefinite; but the converse is not true:

since a positive semidefinite matrix A might have $\mathbf{x}^{T} A \mathbf{x}=0$ for $\mathbf{x} \neq \mathbf{0}$.
Example 5. The matrix $A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ is positive semidefinite, but not positive definite.
To be continued!

Definitions:

- a matrix A is negative definite if $\mathbf{x}^{T} A \mathbf{x}<0$ for all $\mathbf{x} \neq \mathbf{0}$.
- Similarly, a matrix A is negative semidefinite if $\mathbf{x}^{T} A \mathbf{x} \leq 0$ for all \mathbf{x}.
- If a matrix is neither positive or negative semidefinite, it is called indefinite. This means that there are vectors \mathbf{x} and \mathbf{y} with $\mathbf{x}^{T} A \mathbf{x}>0$ and $\mathbf{y}^{T} A \mathbf{y}<0$.
*Only "positive definite" matrices define inner products, via $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} A \mathbf{y}$.

Poll Question 1: The norm of a vector \mathbf{x} in a vector space is always nonnegative (that is, $\|\mathbf{x}\| \geq 0$).
W) Yes
B) No

* The University provides peer tutor service, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

