Lecture 2: Quick review from previous lecture

• **Gaussian elimination** to solve a linear system \(Ax = b \).

• Matrix and basic operations, including addition, multiplication....

• **Zero matrix** is denoted by \(O \) or \(O_{m \times n} \).

• \(I_n \) is the \(n \text{-by-} n \) identity matrix and can be represented as \(I_n = \text{diag}(1, \cdots, 1) \).

\[
I_n = \begin{pmatrix}
1 & \cdots & 0 \\
0 & \cdots & 1
\end{pmatrix}_{n \times n} = \text{diag}(1, 1, \cdots, 1).
\]

Recall \(\text{Ex: diag } (a_1, a_2, a_3) = \begin{pmatrix}
a_1 & 0 & 0 \\
0 & a_2 & 0 \\
0 & 0 & a_3
\end{pmatrix} \).

Today we will

• continue discuss Sec. 1.2. Matrices and Vectors and Basic Operations

• discuss Sec. 1.3 Gaussian Elimination

- Lecture will be recorded -

• The first problem set has been posted on Canvas. It is due next Friday (1/29) at 6pm.
Example 2: Solve the system
\[
\begin{align*}
 x + 2y + 2z &= 2 \\
 2x + 6y &= 1 \\
 4x + 4z &= 20
\end{align*}
\]

Augmented matrix
\[
\begin{pmatrix}
 1 & 2 & 2 & | & 2 \\
 2 & 6 & 0 & | & 1 \\
 4 & 0 & 4 & | & 20
\end{pmatrix}
\]

\[
\begin{pmatrix}
 1 & 2 & 2 & | & 2 \\
 0 & -4 & -3 & | & -3 \\
 0 & -8 & -4 & | & 12
\end{pmatrix}
\]

Use \(\text{①} \) to eliminate "\(x \)" from \(\text{③} \),

\[
\begin{pmatrix}
 1 & 2 & 2 & | & 2 \\
 0 & -4 & -3 & | & -3 \\
 0 & 0 & -20 & | & 0
\end{pmatrix}
\]

To solve \(x, y, z \),
same as right-hand side.

To solve \(x, y, z \) by using back substitution,

\[
\begin{align*}
 \text{③} &: \quad z = 0. \\
 \text{②} &: \quad 2y - 4(0) = -3 \quad \Rightarrow \quad y = -\frac{3}{2} \\
 \text{①} &: \quad x + 2(-\frac{3}{2}) + 0 = 2 \quad \Rightarrow \quad x = 5.
\end{align*}
\]

This is called "Gaussian elimination process."
1.3 Gaussian Elimination

In Gaussian elimination process, when we reach the \(j \)th row, element \((j, j)\) of the new augmented matrix is called the **pivot** for that row.

We look at the example:

Example 1: Find pivots of the system:

\[
\begin{align*}
 x + 2y + 2z &= 2 \\
 2x + 10y &= 1 \\
 4x + 20y + 4z &= 0
\end{align*}
\]

\[
\text{augmented matrix} \\
\begin{pmatrix}
 1 & 2 & 2 \\
 2 & 10 & 0 \\
 4 & 20 & 4
\end{pmatrix}
\]

\[
\begin{align*}
 &\rightarrow (2) - 2(1) \\
 &\rightarrow (3) - 4(1)
\end{align*}
\]

\[
\begin{pmatrix}
 1 & 2 & 2 \\
 0 & 6 & -4 \\
 0 & 12 & -8
\end{pmatrix}
\]

1st pivot

2nd pivot

3rd pivot

Exercise: To solve \(x, y, z \),
If at any point in the process one of the pivots is 0, then we are stuck! We can’t use a row with a zero pivot to eliminate the entries beneath that pivot.

Example 2: Suppose we are solving a 4-by-4 system and after using the first row to eliminate entries (2, 1), (3, 1), and (4, 1), we have the following matrix:

\[
\begin{pmatrix}
5 & 2 & 3 & 5 & 2 \\
0 & 0 & 2 & 6 & 9 \\
0 & 1 & 3 & 8 & 3 \\
0 & 2 & 5 & 1 & 8 \\
\end{pmatrix}
\]

• How to fix this?

We permute row 2 with another row (will discuss more later).

Definition: If a matrix A has all non-zero pivots, then this matrix A is called **regular**.

That is, regular matrices are those for which Gaussian elimination can be performed without switching the order of rows.

For instance, the matrix in **Example 1** is regular since all its pivots are NOT zero.
Remark:

- **Adding/subtracting** a multiple of one row to/from another row is called an **elementary row operation**.
- Each elementary row operation is associated with an **elementary matrix**, defined by applying the elementary row operation to the identity matrix.

Example 3. The 3×3 **elementary matrix** associated with adding 3 times the 3^{rd} row to the 1^{st} row is:

$$I_3 \rightarrow \begin{pmatrix} 0 & +3 & 3 \end{pmatrix} \hspace{1cm} E = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ elementary matrix}$$

- Multiplying a matrix A on the left by an elementary matrix E performs the associated row operation on A. For example, check that:

$$EA = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a + 3g & b + 3h & c + 3i \\ d & e & f \\ g & h & i \end{pmatrix}$$

Properties about elementary matrix

- Suppose E is a 3-by-3 **elementary matrix** that adds 7 times the 1^{st} row to the 3^{rd} row. Then:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}$$
Then

\[
EA = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
7 & 0 & 1
\end{pmatrix} \times \begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix} = \begin{pmatrix}
a & b & c \\
d & e & f \\
g + 7a & h + 7b & i + 7c
\end{pmatrix}
\]

- How to **UNDO** the effect of this row operation? (To get original A)

\[
E^{-1} = \begin{pmatrix}
0 & 0 & 0 \\
-7 & 0 & 1
\end{pmatrix}
\]

\[
E^{-1}E = I_3, \quad \text{also} \quad EE^{-1} = I_3
\]

\[
\overset{\text{undo}}{E^{-1}EA} = A.
\]

§ Some observations of \(E_1^{-1}E_2^{-1} \ldots E_m^{-1}\), where \(E_i\) is elementary matrix with lower triangular form: We first consider \(m = 3\). Let

\[
E_1 = \begin{pmatrix}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad E_2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
b & 0 & 1
\end{pmatrix}, \quad E_3 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{pmatrix}
\]

\[
(\text{undo}) \quad E_1^{-1} = \begin{pmatrix}
-1 & 0 & 0 \\
-a & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad E_2^{-1} = \begin{pmatrix}
10 & 0 & 0 \\
0 & 1 & 0 \\
-b & 0 & 1
\end{pmatrix}, \quad E_3^{-1} = \begin{pmatrix}
10 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

Then

\[
E_1^{-1}E_2^{-1}E_3^{-1} = \begin{pmatrix}
1 & 0 & 0 \\
-a & 1 & 0 \\
-b & -c & 1
\end{pmatrix}, \quad \overset{\text{lower triangular form}}{\text{meaning zero above diagonal}}
\]

In general, \(E_1^{-1} \ldots E_m^{-1}\) has the form

\[
L = \begin{pmatrix}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{pmatrix}, \quad \overset{\text{lower triangular}}{\text{meaning zero above diagonal}}
\]
In particular, $E_1^{-1}E_2^{-1}E_3^{-1}E_3E_2E_1 = I$ (identity matrix) which also implies

undo effects

Thus, we observe the following fact in the Gaussian elimination process:

Summary: For any **regular** matrix A, we can multiply it on the left by a sequence of elementary matrices E_1, \ldots, E_m, so that the product is an upper triangular matrix U, namely:

$$E_mE_{m-1} \cdots E_1A = U$$

Then

$$\begin{pmatrix} E_1^{-1} & \cdots & E_m^{-1} \end{pmatrix} E_mE_{m-1} \cdots E_1A = \begin{pmatrix} E_1^{-1} & \cdots & E_m^{-1} \end{pmatrix} U.$$

Fact 1:

(1) We have shown that any **regular** matrix A can be factored as

$$A = LU,$$

where U is upper triangular and L is lower triangular.

Furthermore, L has 1’s on its main diagonal, and U has non-zero elements on its main diagonal (the pivots of A).

(2) L, \tilde{L} are $n \times n$ lower triangular matrices, so is $L\tilde{L}$.

(3) U, \tilde{U} are $n \times n$ upper triangular matrices, so is $U\tilde{U}$.
Example 4: Find LU factorization of the matrix

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 4 & -5 & 3 \\ 1 & 4 & -2 \end{pmatrix}, \quad L = I_3.$$

$$E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 1 & 4 & -2 \end{pmatrix}, \quad L = E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{c} \square \\ \end{array} \right) = U$$

To be continued!
Poll Question: Which of the following is “linear” system?

A)
\[
\begin{align*}
 x + 2y + 2z &= 2 \\
 10y - z &= 1 \\
 4x + 4z^2 &= 0
\end{align*}
\]

B)
\[
\begin{align*}
 x + 2^4y + 3z &= 1 \\
 2x + 10y &= -2 \\
 4x + 11^3y &= 1
\end{align*}
\]

Caution: After clicking submit, you will NOT be able to resubmit your answer!

* You should be able to see the pop up Zoom question. Answer the question by clicking the corresponding answer and then submit.