## Lecture 2: Quick review from previous lecture

- Gaussian elimination to solve a linear system $A \mathbf{x}=\mathbf{b}$.
- Matrix and basic operations, including addition, multiplication....
- Zero matrix is denoted by $O$ or $O_{m \times n}$.
- $I_{n}$ is the $n$-by- $n$ identity matrix and can be represented as $I_{n}=\operatorname{diag}(1, \cdots, 1)$.

$$
I_{n}=\left(\begin{array}{lll}
1 & \ddots & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)_{n \times n .}=\operatorname{diag}(1,1, \ldots, 1) .
$$

Recall Ex: $\operatorname{drag}\left(a_{1}, a_{2}, a_{3}\right)=\left(\begin{array}{ccc}a_{1} & 0 & 0 \\ 0 & a_{2} & 0 \\ 0 & 0 & a_{3}\end{array}\right)$.

Today we will

- continue discuss Sec. 1.2. Matrices and Vectors and Basic Operations
- discuss Sec. 1.3 Gaussian Elimination
- Lecture will be recorded -
- The first problem set has been posted on Canvas. It is due next Friday $(1 / 29)$ at 6 pm .

Example 2: Solve the system $\begin{cases}x+2 y+2 z & =2 \\ 2 x+6 y & =1 \\ 4 x+4 z & =20\end{cases}$

$$
\left(\begin{array}{rrr|r}
1 & 2 & 2 & 2 \\
2 & 6 & 0 & 1 \\
4 & 0 & 4 & 20
\end{array}\right)
$$

$$
\begin{cases}1 x+2 y+2 z & =2 \text { - (1) } \\ 2 x+6 y & =1 \text { - (2) } \\ 4 x+4 z & =20\end{cases}
$$

- Use (1) to eliminate " $x$ " from (2)(3)
$\xrightarrow[(2)-40]{(2)-21)}\left(\begin{array}{ccc|c}1 & 2 & 2 & 2 \\ 0 & 2 & -4 & -3 \\ 0 & -8 & -4 & 12\end{array}\right)$
(2)-2(1)

$$
\text { (1) } 1\left(\begin{array}{rl}
x+2 y+2 z & =2 \\
2 y-4 z & =-3 \\
-8 y-4 z & =12
\end{array}\right. \text { New }
$$

$\xrightarrow{(3)+4(2)}$

$$
\left(\begin{array}{ccc|c}
1 & 2 & 2 & 2 \\
0 & 2 & -4 & -3 \\
0 & 0 & -20 & 0
\end{array}\right)
$$

To solve $x, y, z$, same as right-hand side.

This is called
"Gaussian elimination process".
To solve $x, y, z$ by using back substitution.
(3) $\quad z=0$.
(2): $2 y-4(0)=-3$

$$
y=-3 / 2
$$

(1) $=x+2\left(-\frac{3}{2}\right)+0=2$.
${ }^{2}(5-3 / 2) \quad x=5 . \quad$ Spring 2021
$(5,-3 / 2,0)$
1.3 Gaussian Elimination

In Gaussian elimination process, when we reach the $j^{\text {th }}$ row, element $(j, j)$ of the new augmented matrix is called the pivot for that row.

We look at the example:
Example 1: Find pivots of the system:

$$
\begin{cases}x+2 y+2 z & =2 \\ 2 x+10 y & =1 \\ 4 x+20 y+4 z & =0\end{cases}
$$

aug mented

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 2 & 2 & 2 \\
2 & 10 & 0 & 1 \\
4 & 20 & 4 & 0
\end{array}\right) \xrightarrow[(3)-2(1)]{(4)}\left(\begin{array}{ccc|c}
1 & 2 & 2 & 2 \\
0 & 6 & -4 & -3 \\
0 & 12 & -4 & -8
\end{array}\right) \\
& 1^{\text {se }} \text { prot } \\
& \xrightarrow{\text { (3) }-2 \text { (2) }}\left(\begin{array}{ccc|c}
1 & 2 & 2 & 2 \\
0 & 6 & -4 & -3 \\
0 & 0 & 4 & -2
\end{array}\right)
\end{aligned}
$$

Exercise: To solve $x, y, z$,
$\checkmark$ If at any point in the process one of the pivots is 0 , then we are stuck! We can't use a row with a zero pivot to eliminate the entries beneath that pivot.

Example 2: Suppose we are solving a 4 -by- 4 system and after using the first row to eliminate entries $(2,1),(3,1)$, and $(4,1)$, we have the following matrix:

$$
\left(\begin{array}{llll|l}
5 & 2 & 3 & 5 & 2 \\
0 & 0 & 2 & 6 & 9 \\
0 & 1 & 3 & 8 & 3 \\
0 & 2 & 5 & 1 & 8
\end{array}\right)
$$

- How to fix this?

(2) with discuss more later)

Definition: If a matrix $A$ has all non-zero pivots, then this matrix $A$ is called regular.

That is, regular matrices are those for which Gaussian elimination can be performed without switching the order of rows.

For instance, the matrix in Example 1 is regular since all its pivots are NOT zero.

## Remark:

- Adding/subtracting a multiple of one row to/from another row is called an elementary row operation.
- Each elementary row operation is associated with an elementary matrix, defined by applying the elementary row operation to the identity matrix.

Example 3. The $3 \times 3$ elementary matrix associated with adding 3 times the $3^{\text {rd }}$ row to the $1^{\text {st }}$ row is:

$$
I_{3} \xrightarrow{(1+3(3)}=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

elementary matrix

- Multiplying a matrix $A$ on the left by an elementary matrix $E$ performs the associated row operation on $A$. For example, check that:

$$
E A=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{ccc}
a+3 g & b+3 h & c+3 i \\
d & e & f \\
g & h & i
\end{array}\right)
$$

## § Properties about elementary matrix

- Suppose $E$ is a 3 -by- 3 elementary matrix that adds 7 times the $1^{\text {st }}$ row to the $3^{\text {rd }}$ row. Then:

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
7 & 0 & 1
\end{array}\right)
$$

Then

$$
E A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
7 & 0 & 1
\end{array}\right) \times\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g+7 a & h+7 b & i+7 c
\end{array}\right)
$$

- How to UNDO the effect of this row operation? (To get original A)
"substeracting 7 times 1 re now from $3^{\text {rd }}$ row" elementary matrix

$$
\begin{aligned}
& E^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-7 & 0 & 1
\end{array}\right) . \\
& {\underset{\text { undo }}{ }}_{-1}^{E}=I_{3} \text { also } E E^{-1}=I_{3} \\
& E^{-1} E A=A .
\end{aligned}
$$

$\S$ Some observations of $E_{1}^{-1} E_{2}^{-1} \ldots E_{m}^{-1}$, where $E_{i}$ is elementary matrix with lower triangular form: We first consider $m=3$. Let
(undo)

$$
E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
b & 0 & 1
\end{array}\right), \quad E_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right)
$$

$$
E_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-a & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-b & 0 & 1
\end{array}\right) . \quad E_{3}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -c & 1
\end{array}\right)
$$

Then $E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ -b & -c & 1\end{array}\right)$
-lower triangular torn meaning zeno above diagonal
In general, $G^{-1} \ldots E_{m}^{-1}$ has the form

$$
L=\left(\begin{array}{ccc}
0 & 0 & \cdots \\
0 & 0 & 0 \\
i+i
\end{array}\right) \text {, lower triangular. }
$$

In particular, $\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{3} E_{2} E_{1}=I \text { (identity matrix) which also implies }}_{1}$ undo

$$
\frac{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}}{\text { Lover } E_{3} E_{2} E_{1} A=A},
$$

Thus, we observe the following fact in the Gaussian elimination process:
Summary: For any $\underbrace{\text { regular }}$ matrix $A$, we can multiply it on the left by no zero pivot
a sequence of elementary matrices $E_{1}, \ldots, E_{m}$, so that the product is an upper triangular matrix $U$, namely:

$$
E_{m} E_{m-1} \cdots E_{1} A=U
$$

Then

(1) We have shown that any regular matrix $A$ can be factored as

$$
A=L U, \quad \text { where } U \text { is upper triangular and } L \text { is lower triangular. }
$$

Furthermore, $L$ has 1's on its main diagonal, and $U$ has non-zero elements on its main diagonal (the pivots of $A$ ).
(2) $L, \tilde{L}$ are $n \times n$ lower triangular matrices, so is $L \tilde{L}$.
(3) $U, \tilde{U}$ are $n \times n$ upper triangular matrices, so is $U \tilde{U}$.


Example 4: Find $L U$ factorization of the matrix

$$
\rightarrow(\nabla)=u
$$


continued

Poll Question: Which of the following is "linear" system?
A)

$$
\left\{\begin{array}{r}
x+2 y+2 z=2 \\
10 y-z=1 \\
4 x+42=0
\end{array}\right.
$$



$$
\left\{\begin{aligned}
x+2^{4} y+3 z & =1 \\
2 x+10 y & =-2 \\
4 x+11^{3} y & =1
\end{aligned}\right.
$$

Caution: After clicking submit, you will NOT be able to resubmit your answer!

* You should be able to see the pop up Zoom question. Answer the question by clicking the corresponding answer and then submit.

