Lecture 2: Quick review from previous lecture

e (Gaussian elimination to solve a linear system Ax = b.
e Matrix and basic operations, including addition, multiplication....
e Zero matrix is denoted by O or O,,xp.

e [, isthe n-by-n identity matrix and can be represented as I,, = diag(1,--- , 1).
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Today we will
e continue discuss Sec. 1.2. Matrices and Vectors and Basic Operations

e discuss Sec. 1.3 Gaussian Elimination

- Lecture will be recorded -

e The first problem set has been posted on Canvas. It is due next Friday (1/29)
at 6pm.
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T+2y+2z =2

Example 2: Solve the system { 2z + 6y =1
do + 4z = 20
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1.3 Gaussian Elimination

In Gaussian elimination process, when we reach the 5™ row, element (4, 5) of the
new augmented matrix is called thegpivetyfor that row.

We look at the example:
Example 1: Find pivots of the system:

TH+2y+2z2 =2
2x + 10y =1
dr +20y +4z =0
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v/ If at any point in the process one of the pivots is 0, then we are stuck! We
can’t use a row with a zero pivot to eliminate the entries beneath that pivot.

Example 2: Suppose we are solving a 4-by-4 system and after using the first row

to eliminate entries (2, 1), (3,1), and (4, 1), we have the following matrix:
b 2 3 512
0 2 619
0 113 8|3
0 2 1|8
) ri\d'(‘

e How to fix this?  (41/e pev maual2 rvow @ with

Sthay Yow ( will dBarss woR
/a‘wr)

.

Definition: If a matrix A has all non-zero pivots, then this matrix A is called
regular.

That isgregulanmatrices are those for which Gaussian elimination can be performed
without switching the order of rows.

For instance, the matrix in Example 1 is regular since all its pivots are NOT

—
ZCro.
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( Remark:

e Adding/subtracting a multiple of one row to/from another row is called an
elementary row operation.

e FEach elementary row operation is associated with an elementary matrix,
defined by applying the elementary row operation to the identity matrix.

Example 3. The 3 X 3 elementary matrix associated with adding 3 times the
3" row to the 1% row is:

O +36) /| o 3
I, ~———7{,,

o )/ e/emcutap/ ma‘tn)’.

e Multiplying a matrix A on the left by an elementary matrix E performs the
associated row operation on A. For example, check that:

1 03 a b c a43g b43h c+3i
EFA=101 0 d e f | = d € f
00 1 g h 1 g h 7

§ Properties about elementary matrix

e Suppose E is a 3-by-3 elementary matrix that adds 7 times the 1°" row to the
3" row. Then:

E:

o = O
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Then

1 00 a b c a b c
FA=1010]|x|d e f]|= d e f
70 1 g h 1 g+Ta h-ETb 1 ¥7c
e How to UNDO the effect of this row operation? (To get original A) ,
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E"E = I3 alkso EE? = I,
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undo -
EEA = A.
§ Some observations of E;'E;' ... E-!, where E; is elementary ma-
trix with lower triangular form: We first consider m = 3. Let
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In particular, B, 'Ey 'E; ' EsEy By = T (identity matrix) which also implies
N s

undo BB BBy By A = A
Kundo effects

Thus, we observe the following fact in the Gaussian elimination process:

LW W“’julay,

Summary: For any regular matrix A, we can multiply it on the left b
Yy y g , pLy y

no Zero pivot
a sequence of elementary matrices Fy, ..., E,,, so that the product is an upper

triangular matrix U, namely:

B, E, 1 BA=U

Then (E"* E“:’) E. G -_E A =(5|-’“‘E.:’) L.’
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Fact 1: M\Lw

(1) We have shown that any regular matrix A can be factored as

A=LU, where U is upper triangular and L is lower triangular.

Furthermore, L has 1’s on its main diagonal, and U has non-zero elements
on its main diagonal (the pivots of A).

(2) L, L are n x n lower triangular matrices, so is LL.

(3) U, U are n x n upper triangular matrices, so is UU.
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Example 4: Find LU factorization of the matrix

1 -2 1
A=( -5 3) , L= Iz
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Poll Question: Which of the following is “linear” system?

A)
T +2y+2z =
10y —2 =1
4z + 4= 0

B

v+ 2 +32 = 1
2z + 10y
4o+ 113y = 1

|
|
N

Caution: After clicking submit, you will NOT be able to resubmit your answer!

*You should be able to see the pop up Zoom question. Answer the question by
clicking the corresponding answer and then submit.

MATH 4242 9 Spring 2021



