
Lecture 20: Quick review from previous lecture

• An n⇥ n matrix K is called positive definite if

– it is symmetric, KT = K

– satisfies the positivity condition

xTKx > 0 for all 0 6= x 2 Rn.

We write K > 0 to mean that K is positive definite matrix.

• Identify any n⇥ n positive definite matrix:
An n-by-n matrix A is positive definite if and only if it is:
(a) symmetric;
(b) regular, hence A = LDLT ; and
(c) D has all positive diagonal entries, i.e. A has positive pivots.

• In particular, we have another way to identify 2⇥ 2 positive definite matrix:✓
a b
b c

◆
is positive definite if and only if

a > 0 and ac� b2 > 0

—————————————————————————————————
Today we will discuss

• Sec. 3.4 - 3.5 Positive definite matrix.

- Lecture will be recorded -

—————————————————————————————————
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Definition: If a matrix A satisfies xTAx � 0 for all vectors x, it is called
positive semidefinite.

Remark: Every positive definite matrix is also positive semidefinite; but the
converse is not true:

positive definite ) positive semidefinite

since a positive semidefinite matrix A might have xTAx = 0 for x 6= 0.

Example 5. The matrix A =

✓
1 �1
�1 1

◆
is positive semidefinite, but not

positive definite.

Definitions:

• a matrix A is negative definite if xTAx < 0 for all x 6= 0.

• Similarly, a matrix A is negative semidefinite if xTAx  0 for all x.

• If a matrix is neither positive or negative semidefinite, it is called indefinite.
This means that there are vectors x and y with xTAx > 0 and yTAy < 0.

*Only “positive definite” matrices define inner products, via hx,yi = xTAy.
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§ Constructing positive definite or positive semidefinite matrices

Definition: Let V be an inner product space. The Gram matrix for vectors
v1, . . . ,vn is the matrix K given by

K =

0

BBB@

hv1,v1i hv1,v2i . . . hv1,vni
hv2,v1i hv2,v2i . . . hv2,vni

... ... ...
hvn,v1i hvn,v2i . . . hvn,vni

1

CCCA

Clearly K is symmetric.

Fact 5: (1) All Gram matrices are positive semidefinite;
(2) Gram matrices are positive definite precisely when the vectors v1, . . . ,vn

are linearly independent.

Example 6. v1 =

0

@
1
2
1

1

A , v2 =

0

@
0
1
0

1

A

(1) For the usual inner product, the Gram matrix for vectors v1,v2 is:

(2) Find the Gram matrix for vectors v1,v2 with respect to hx,yi = xTDy, where
D = diag(3, 2, 1).
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*We write A = [v1, . . . ,vn]. The entry (i, j) of ATA is vT
i vj = hvi,vji. Then

ATA is Gram matrix. By Fact 5, we have

Fact 6: SupposeA is anym⇥nmatrix. ThenK = ATA is positive semidefinite.

We can also prove it directly.

Thus we have

Fact 7: K = ATA is positive definite if and only if
1) the rank of Am⇥n is n (in particular, we must have n  m);
2) the columns of A are linearly independent;
3) kerA = {0}.
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Recall that from Fact 1: Every inner product on Rm is given by

hx,yi = xTCy for all x,y 2 Rm, (1)

where C is a positive definite m⇥m matrix.
Then the Gram matrix of v1, · · · ,vn with respect this inner product (1) is

K =

0

@
hv1,v1i · · · hv1,vni

... ...
hvn,v1i · · · hvn,vni

1

A .

Therefore, in this case, if A = [v1, . . . ,vn] is any m-by-n matrix, then

K = ATCA.

Similar to Fact 7, we have

Fact 8: Let C be a positive definite matrix.
(1) K = ATCA is always positive semidefinite,
(2) K = ATCA is positive definite if v1, . . . ,vn are linearly independent (i.e.
kerA = {0}).
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Fact 9: Let K = ATCA, where A is an m ⇥ n matrix and C is an m ⇥ m
positive definite matrix. Then

kerK = kerA

and moreover rank(K) = rankA.

Example 7. Consider the vector space C0([0, 1]) with inner product hf, gi =R 1
0 f (x)g(x)dx. Construct the Gram matrix K corresponding to 1, x, x2. Is K
positive definite?
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§ To find the symmetric matrix A from the quadratic form

The quadratic form xTAx defined by the symmetric matrix A = (aij), aij = aji
(square, of size n-by-n) is

xTAx =
nX

i=1

nX

j=1

aijxixj

Q: How do we go “backwards” to find the symmetric A from the quadratic form

xTAx?

Example 8. Determine if the following quadratic form is positive definite (that
is, xTAx > 0 for all x 6= 0).

1. In 2 dimensions, suppose

xTAx = 2x21 � 6x1x2 + 3x22.

Then A =

2. In 3 dimensions, suppose

xTKx = x21 + 4x1x2 � 2x1x3 + 6x22 + 7x23.

Then

K =
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Poll Question 1: Is the matrix B =

✓
1 1
0 5

◆
positive definite?

A) Yes
B) No

Poll Question 2: Is the matrix B =

✓
�2 0
0 1

◆
positive definite?

A) Yes
B) No

Recall: to identify 2⇥ 2 positive definite matrix:✓
a b
b c

◆
is positive definite if and only if

a > 0 and ac� b2 > 0

* The University provides peer tutor service, which can be found in
https://www.lib.umn.edu/smart (SMART Learning Commons)
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