Lecture 20: Quick review from previous lecture

- An $n \times n$ matrix K is called positive definite if
- it is symmetric, $K^{T}=K$
- satisfies the positivity condition

$$
\mathbf{x}^{T} K \mathbf{x}>0 \quad \text { for all } \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n} .
$$

We write $K>0$ to mean that K is positive definite matrix.

- Identify any $n \times n$ positive definite matrix:

An n-by- n matrix A is positive definite if and only if it is:
(a) symmetric;
(b) regular, hence $A=L D L^{T}$; and

(c) D has all positive diagonal entries, i.e. A has positive pivots.

- In particular, we have another way to identify 2×2 positive definite matrix:
$A=\left(\begin{array}{ll}a & b \\ b & \\ \hline\end{array}\right)$ is positive definite if and only if

$$
\begin{gathered}
a>0 \text { and } a c-b^{2}>0 \\
\operatorname{det} A
\end{gathered}
$$

Today we will discuss

- Sec. 3.4-3.5 Positive definite matrix.
- Lecture will be recorded -

Definition: If a matrix A satisfies $\mathbf{x}^{T} A \mathbf{x} \geq 0$ for all vectors \mathbf{x}, it is called positive semidefinite. Denote $A \geq 0$ meaning A is positive cemidetinite.

Remark: Every positive definite matrix is also positive semidefinite; but the converse is not true:

$$
\begin{aligned}
& \text { positive definite } \Rightarrow \text { positive semidefinite } \\
& x^{\top} A x>0 \quad \forall x \neq 0 \quad x^{\top} A \times 20 \quad \forall x
\end{aligned}
$$

since a positive semidefinite matrix A might have $\mathbf{x}^{T} A \mathbf{x}=0$ for $\mathbf{x} \neq \mathbf{0}$.
Example 5. The matrix $A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ is positive semidefinite, but not positive definite.
(1) $A=A^{\top}$
(2) quadratic form

$$
\begin{aligned}
q(x)=x^{\top} A x=\left(x_{1} x_{2}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}} & =x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2} \\
& =\left(x_{1}-x_{2}\right)^{2} \\
& \geq 0
\end{aligned}
$$

When $x_{1}=x_{2}, q(x)=0$.
Then $A \geq 0$ (posi. semidetinite), but not pori.
Definitions:

- a matrix A is negative definite if $\mathbf{x}^{T} A \mathbf{x}<0$ for all $\mathbf{x} \neq \mathbf{0}$.
- Similarly, a matrix A is negative semidefinite if $\mathbf{x}^{T} A \mathbf{x} \leq 0$ for all \mathbf{x}.
- If a matrix is neither positive or negative semidefinite, it is called indefinite. This means that there are vectors \mathbf{x} and \mathbf{y} with $\mathbf{x}^{T} A \mathbf{x}>0$ and $\mathbf{y}^{T} A \mathbf{y}<0$.
*Only "positive definite" matrices define inner products, via $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} A \mathbf{y}$.
\S Constructing positive definite or positive semidefinite matrices

Definition: Let V be an inner product space. The Gram matrix for vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is the matrix K given by

$$
K=\left(\begin{array}{cccc}
\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{1}, \mathbf{v}_{n}\right\rangle \\
\left\langle\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{2}, \mathbf{v}_{n}\right\rangle \\
\vdots & \vdots & & \vdots \\
\left\langle\mathbf{v}_{n}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{n}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle
\end{array}\right)_{\mathbf{n x} \mathbf{n}}
$$

Clearly K is symmetric. since symmetry property of the inner product,

$$
\left\langle v_{i}, v_{j}\right\rangle=\left\langle v_{j}, v_{i}\right\rangle
$$

Fact 5: (1) All Gram matrices are positive semidefinite;
(2) Gram matrices are positive definite precisely when the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent. Dot product $\langle x, y\rangle=x^{\top} y=y^{\top} x$.
Example 6. $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad \underset{\text { (Dotuct) }}{ }\left[\begin{array}{ll}v_{1}^{\top} v_{1} & v_{1}^{\top} v_{2} \\ v_{2}^{\top} v_{1} & v_{2}^{\top} v_{2}\end{array}\right]=\left[\begin{array}{l}v_{1}^{\top} \\ v_{2}^{\top}\end{array}\right]\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$
(1) For the usual inner product, Hie Gram matrix for vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ is: $A^{\top} A$

$$
\left.K=\left[\begin{array}{ll}
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{2}\right\rangle \\
\left\langle v_{2},\right. & \left.v_{1}\right\rangle
\end{array}\right\rangle\left\langle v_{2}, v_{2}\right\rangle\right]=\left[\begin{array}{ll}
6 & 2 \\
2 & 1
\end{array}\right]_{2 \times 2} \quad \begin{aligned}
& =A \\
& \text { where } A=\left[v_{1} v_{2}\right]
\end{aligned}
$$

By Fact $I(2)$, since $\left\{v_{1}, v_{2}\right\}$ are l. indef, $K>0$.
For $6>0$, get $K=6 \cdot 1-2^{2}=2>0$. Then $K>0$
(2) Find the Gram matrix for vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ with respect to $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} D \mathbf{y}$, where

$$
\begin{aligned}
& \left.D=\operatorname{diag}(3,2,1) v_{1}, v_{2}\right\rangle \\
& K=\left[\begin{array}{ll}
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}\right. \\
\left\langle v_{2},\right. & \left.v_{1}\right\rangle \\
\left\langle v_{2},\right. & \left.v_{2}\right\rangle
\end{array}\right]=\left[\begin{array}{ll}
v_{1}^{\top} D v_{1} & v_{1}^{\top} D v_{2} \\
v_{2}^{\top} D v_{1} & v_{2}^{\top} D v_{2}
\end{array}\right]=\left[\begin{array}{cc}
12 & 4 \\
4 & 2
\end{array}\right] \\
& \text { MATH 4242-Week 8-1 } v_{1}^{\top} D v_{1}=\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)\left[\begin{array}{ll}
3 & \\
& 2
\end{array}\right]\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 21
\end{array}\right)\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)=3+8+1 \stackrel{\text { Spring 2021 }}{=12}
\end{aligned}
$$

Then

$$
{ }^{2 K} K=A^{\top} D A \text {, where } A=\left[\begin{array}{ll}
u_{1} & v_{2}
\end{array}\right] \text {. }
$$

${ }^{*}$ We write $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$. The entry (i, j) of $A^{T} A$ is $\mathbf{v}_{i}^{T} \mathbf{v}_{j}=\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$. Then $A^{T} A$ is Gram matrix. By Fact 5 , we have

Fact 6: Suppose A is any $m \times n$ matrix. Then $K=A^{T} A$ is positive semidefinite.
(1) $K \stackrel{\text { We can also }}{\text { Prove it directly }}=\left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A=K$. K is sym metro.
(2)

$$
\begin{aligned}
& q(x)=x^{\top} K x=x^{\top} A^{\top} A x=(A x)^{\top} A x \\
& =\|A x\|_{2}^{2} \quad\left(\|y\|_{2}^{2}=\sum y_{i}^{2}\right) \\
& \geq 0, \forall x \\
& \text { Then } K \geq 0 \text {. }
\end{aligned}
$$

Observation: τ_{0} have $K>0$, we need $x^{\top} k \pi=0 \Leftrightarrow x=0$.

$$
\begin{aligned}
x^{\top} K x=0 & \Leftrightarrow A x=0 . \\
& \Leftrightarrow x \in k \operatorname{er} A .
\end{aligned}
$$

If $\operatorname{ker} A=\{0\}$, then $x=0$.
Thus we have
Fact 7: $K=A^{T} A$ is positive definite if and only if

1) the rank of $A_{m \times n}$ is n (in particular, we must have $n \leq m$);
2) the columns of A are linearly independent;
3) $\operatorname{ker} A=\{\mathbf{0}\}$.

Recall that from Fact 1: Every inner product on \mathbb{R}^{m} is given by

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} C \mathbf{y} \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{m} \tag{1}
\end{equation*}
$$

where C is a positive definite $m \times m$ matrix.
Then the Gram matrix of $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ with respect this inner product (1) is

$$
K=\left(\begin{array}{ccc}
\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle & \cdots & \left\langle\mathbf{v}_{1}, \mathbf{v}_{n}\right\rangle \\
\vdots & & \vdots \\
\left\langle\mathbf{v}_{n}, \mathbf{v}_{1}\right\rangle & \cdots & \left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle
\end{array}\right)=\left[\begin{array}{ccc}
\mathbf{v}_{1}^{\top} \mathbf{C} \mathbf{v}_{1} & \cdots & \mathbf{v}_{1}^{\top} \mathbf{C} \mathbf{v}_{\mathbf{n}} \\
& & \vdots \\
\mathbf{v}_{n}^{\top} \mathbf{c v}_{1} & & \\
\mathbf{u}^{\top} \mathbf{C} \mathbf{v}_{n}
\end{array}\right]
$$

Therefore, in this case, if $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is any m-by- n matrix, then

$$
K=A^{T} C A . \quad=A^{\top} C A
$$

Similar to Fact 7, we have
where $A=\left[v_{1} \ldots v_{n}\right]$
Fact 8: Let C be a positive definite matrix.
(1) $K=A^{T} C A$ is always positive semidefinite,
(2) $K=A^{T} C A$ is positive definite if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent (i.e. $\operatorname{ker} A=\{\mathbf{0}\}$).
(1) It's clear that $K^{\top}=K$.

$$
\begin{aligned}
q(x)=x^{\top} K x=x^{\top} A^{\top} C A x & =(A x)^{\top} C(A x) \\
& >0 \text { if } z=A x \neq 0 \\
& =0 \text { if } z=A x=0
\end{aligned}
$$

So, $f(x) \geq 0 \quad \forall x$. implies $K \geq 0$ since $C>0$.
(2) If $\operatorname{ker} A=\{01$, then $A x=0$ gives $x=0$.

Thus $\quad x^{\top} K x=0 \quad \Leftrightarrow \quad x=0$.

Fact 9: Let $K=A^{T} C A$, where A is an $m \times n$ matrix and C is an $m \times m$ positive definite matrix. Then

$$
\operatorname{ker} K=\operatorname{ker} A
$$

and moreover $\operatorname{rank}(K)=\operatorname{rank} A$.
7.
he
continued!

Example 7. Consider the vector space $C^{0}([0,1])$ with inner product $\langle f, g\rangle=$ $\int_{0}^{1} f(x) g(x) d x$. Construct the Gram matrix K corresponding to $\underline{1}, \underline{x}, \underline{x^{2}}$. Is K

$$
K=\left[\begin{array}{ccc}
\langle 1,1\rangle & \langle 1, x\rangle & \left\langle 1, x^{2}\right\rangle \\
\langle x, 1\rangle & \langle x, x\rangle & \left\langle x, x^{2}\right\rangle \\
\left\langle x^{2}, 1\right\rangle & \left\langle x^{2}, x\right\rangle & \left\langle x^{2}, x^{2}\right\rangle
\end{array}\right]_{3 x 3}=\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right] .
$$

Compute

$$
\left\langle x^{i}, x^{j}\right\rangle=\int_{0}^{1} x^{i} \cdot x^{j} d x=\int_{0}^{1} x^{i+j} d x=\left.\frac{1}{i+j+1} x^{i+j+1}\right|_{0} ^{1}
$$

By Fact 5 (2), since $1, x, x^{2} \mid$ are $=\frac{1}{i+j+1}$ 1 l. indep, we have $K>0$. K
\S To find the symmetric matrix A from the quadratic form
The quadratic form $\mathbf{x}^{T} A \mathbf{x}$ defined by the symmetric matrix $A=\left(a_{i j}\right), a_{i j}=a_{j i}$ (square, of size n-by- n) is

$$
\mathbf{x}^{T} A \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

Q: How do we go "backwards" to find the symmetric A from the quadratic form

$$
\mathbf{x}^{T} A \mathbf{x} ?
$$

Example 8. Determine if the following quadratic form is positive definite (that is, $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$).

1. In 2 dimensions, suppose

Then

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -3 \\
-3 & 3
\end{array}\right] \text { dude ty } 2 \\
& 2>0, \quad \text { der } A=2 \cdot 3-(-3)^{2}<0
\end{aligned}
$$

A is not posit. definite, quadrate form is ions, suppose paine definite.
2. In 3 dimensions, suppose

$$
\mathbf{x}^{T} K \mathbf{x}=x_{1}^{2}+4 c_{1} x_{2}-2 x_{1} x_{3}+6 x_{2}^{2}+7 x_{3}^{2}
$$

Then

$$
K=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 6 & 0 \\
-1 & 0 & 7
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right]
$$

Then $K>0$. so is its quadroon form.

Poll Question 1: Is the matrix $B=(1 / 5)$ positive definite?
A) Yes
B) No

Poll Question 2: Is the matrix $B=\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right)$ positive definite?
A) Yes
D) No

Recall: to identify 2×2 positive definite matrix:
$\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is positive definite if and only if

$$
a>0 \text { and } a c-b^{2}>0
$$

* The University provides peer tutor service, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

