Lecture 20: Quick review from previous lecture

- An $n \times n$ matrix K is called **positive definite** if
 - it is symmetric, $K^T = K$

- satisfies the positivity condition

 $\mathbf{x}^T K \mathbf{x} > 0 \qquad \text{for all } \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n.$

We write K > 0 to mean that K is **positive definite** matrix.

- Identify any $n \times n$ positive definite matrix: An *n*-by-*n* matrix *A* is **positive definite** if and only if it is: $A \longrightarrow \begin{bmatrix} u_{11} \\ \vdots \\ u_{m} \end{bmatrix}$ (a) symmetric;
 - (b) regular, hence $A = LDL^T$; and
 - (c) D has all positive diagonal entries, i.e. A has positive pivots.
- In particular, we have another way to identify 2×2 positive definite matrix: $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$ is **positive definite** if and only if

$$a > 0$$
 and $ac - b^2 > 0$
det A

Today we will discuss

• Sec. 3.4 - 3.5 Positive definite matrix.

- Lecture will be recorded -

Definition: If a matrix A satisfies $\mathbf{x}^T A \mathbf{x} \geq 0$ for all vectors \mathbf{x} , it is called Denote A 20 meaning A is positive cenidation positive <mark>semi</mark>definite. **Remark:** Every positive definite matrix is also positive semidefinite; but the converse is not true: positive definite \Rightarrow positive semidefinite $\times A \times > O \quad \forall \times \neq O$ XTAXZO VX since a positive semidefinite matrix A might have $\mathbf{x}^T A \mathbf{x} = 0$ for $\mathbf{x} \neq \mathbf{0}$. **Example 5.** The matrix $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ is positive semidefinite, but not positive definite. $(\mathbf{D}\mathbf{A} = \mathbf{A}^{T})$ (2) quadratiz form $q(x) = \chi^{T}A \chi = (\chi_{1} \chi_{2}) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix} = \chi_{1}^{2} - 2\chi_{1}\chi_{2} + \chi_{2}^{2}$ $= (x_1 - x_2)$ when $x_1 = x_2$, g(x) = 0. Then $A \ge 0$ (posi. semidetinite), but not posi. definite **Definitions:** • a matrix A is **negative definite** if $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$. • Similarly, a matrix A is **negative semidefinite** if $\mathbf{x}^T A \mathbf{x} \leq 0$ for all \mathbf{x} . • If a matrix is neither positive or negative semidefinite, it is called **indefinite**. This means that there are vectors \mathbf{x} and \mathbf{y} with $\mathbf{x}^T A \mathbf{x} > 0$ and $\mathbf{y}^T A \mathbf{y} < 0$.

*Only "positive definite" matrices define inner products, via $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T A \mathbf{y}$.

§ Constructing positive definite or positive semidefinite matrices

Definition: Let V be an inner product space. The **Gram matrix** for vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is the matrix K given by $K = \begin{pmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \ldots & \langle \mathbf{v}_1, \mathbf{v}_n \rangle \\ \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \ldots & \langle \mathbf{v}_2, \mathbf{v}_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{v}_n, \mathbf{v}_1 \rangle & \langle \mathbf{v}_n, \mathbf{v}_2 \rangle & \ldots & \langle \mathbf{v}_n, \mathbf{v}_n \rangle \end{pmatrix}_{\mathbf{N} \times \mathbf{N}}$

Clearly K is symmetric findle for matry property of the inner product, $\langle V_i, V_j \rangle = \langle V_j, V_i \rangle$ Fact 5: (1) All Gram matrices are positive semidefinite; (2) Gram matrices are positive definite precisely when the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent. Example 6. $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_1 \mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_1 \mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_1 \mathbf{v}$

Or 6>0, det K= 6.1-2²=2>0. Then K>0

(2) Find the Gram matrix for vectors $\mathbf{v}_1, \mathbf{v}_2$ with respect to $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T D \mathbf{y}$, where $\begin{array}{c}
D = \operatorname{diag}(3, 2, 1) \\
K = \begin{bmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle \langle \mathbf{v}_1, \mathbf{v}_1 \rangle \\
\langle \mathbf{v}_1, \mathbf{v}_1 \rangle \langle \mathbf{v}_2, \mathbf{v}_2 \rangle \\
\langle \mathbf{v}_2, \mathbf{v}_1 \rangle \langle \mathbf{v}_2, \mathbf{v}_2 \rangle \\
\end{bmatrix} = \begin{bmatrix} \mathbf{v}_1^\mathsf{T} \mathsf{D} \, \mathbf{v}_1 & \mathbf{v}_1^\mathsf{T} \mathsf{D} \, \mathbf{v}_2 \\
\mathsf{v}_1^\mathsf{T} \mathsf{D} \, \mathbf{v}_1 & \mathsf{v}_1^\mathsf{T} \mathsf{D} \, \mathbf{v}_2 \\
\end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 4 & 2 \end{bmatrix}$ $\begin{array}{c}
\text{MATH 4242-Week 8-1} \mathbf{v}_1^\mathsf{T} \mathsf{D} \mathbf{v}_1 = (1 & 21) \begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 2 \\ 2 & 2 \end{bmatrix} = 3 + 8 + 1 \\
\end{array}$

[12>0, det K >0 . So K >0]. ThenK $= A^T D A$ where A= [V, Vz] *We write $A = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$. The entry (i, j) of $A^T A$ is $\mathbf{v}_i^T \mathbf{v}_j = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. Then $A^T A$ is Gram matrix. By Fact 5, we have **Fact 6:** Suppose A is any $m \times n$ matrix. Then $K = A^T A$ is positive semidefinite. We can also prove it directly. $\bigcirc K = (A^T A)^T = A^T (A^T)^T = A^T A = K$ K is symmetric. $= \|A \times \|_{2}^{2} \quad (\|y\|_{2}^{2} = \vec{\Sigma} y_{1}^{2})$ 2 0, V× Then K ≥ 0. Observation: To have K>0 we need xTKX = 0 <=> x=0. $x^{T}Kx = 0 \langle \Rightarrow Ax = 0$ (=) X G Ker A. $\frac{1}{4}$ Ker $A = \{0\}$, then X = 0. Thus we have Fact 7: $K = A^T A$ is **positive definite** if and only if 1) the rank of $A_{m \times n}$ is *n* (in particular, we must have $n \leq m$); 2) the columns of A are linearly independent; 3) ker $A = \{0\}$. IR" Amxn rank(A) = N. ker A= [0] MATH 4242-Week 8-1 4

Recall that from **Fact 1:** Every inner product on \mathbb{R}^m is given by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T C \mathbf{y}$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, (1)

where C is a **positive definite** $m \times m$ matrix.

Then the Gram matrix of $\mathbf{v}_1, \cdots, \mathbf{v}_n$ with respect this inner product (1) is

$$K = \begin{pmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_1, \mathbf{v}_n \rangle \\ \vdots & \vdots \\ \langle \mathbf{v}_n, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_n, \mathbf{v}_n \rangle \end{pmatrix} = \begin{bmatrix} \mathbf{v}_1^{\mathsf{T}} \mathbf{C} \mathbf{v}_1 & \cdots & \mathbf{v}_1^{\mathsf{T}} \mathbf{C} \mathbf{v}_n \\ \vdots \\ \mathbf{v}_n^{\mathsf{T}} \mathbf{v}_n & \mathbf{v}_n \end{pmatrix}$$

 $= A^{\mathsf{T}} C A_{\mathsf{A}}$

where A= [v1 .- vn]

Therefore, in this case, if $A = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$ is any *m*-by-*n* matrix, then

$$K = A^T C A.$$

Similar to **Fact 7**, we have

Fact 8: Let C be a positive definite matrix. (1) $K = A^{T}CA$ is always positive semidefinite, (2) $K = A^{T}CA$ is positive definite if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent (i.e. ker $A = \{0\}$). (1) It's clear that $K^{T} = K$. $g(\mathbf{v}) = \mathbf{x}^{T} \mathbf{K} \mathbf{x} = \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{C} \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^{T} \mathbf{C} (\mathbf{A} \mathbf{x})$ $> 0 \quad \text{if } \mathbf{z} = \mathbf{A} \mathbf{x} \neq 0$ $= 0 \quad \text{if } \mathbf{z} = \mathbf{A} \mathbf{x} \neq 0$ $\leq 0, \quad \mathbf{g}(\mathbf{x}) \geq 0 \quad \forall \mathbf{x}. \quad \text{mplies} \quad \mathbf{K} \geq 0 \quad \text{since } \mathbf{C} > \mathbf{0}.$ (2) If ker $\mathbf{A} = \{0\}, \quad \text{then } \mathbf{A} \mathbf{x} = 0 \quad \text{gives } \mathbf{x} = 0.$ $\text{Thus } \mathbf{x}^{T} \mathbf{K} \mathbf{x} = 0 \quad \langle \mathbf{z} \mathbf{x} = 0.$ Fact 9: Let $K = A^T C A$, where A is an $m \times n$ matrix and C is an $m \times m$ positive definite matrix. Then

 $\ker K = \ker A$

be continued!

and moreover $\operatorname{rank}(K) = \operatorname{rank}A$.

Example 7. Consider the vector space $C^0([0,1])$ with inner product $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$. Construct the Gram matrix K corresponding to $1, x, x^2$. Is K positive definite? $K = \begin{bmatrix} \langle 1, 1 \rangle & \langle 1, x \rangle & \langle 1, x^2 \rangle \\ \langle x, 1 \rangle & \langle x, x \rangle & \langle x, x \rangle \\ \langle x, 1 \rangle & \langle x, x \rangle & \langle x, x \rangle \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$

Compute

$$\langle x^{i}, x^{i} \rangle = \int_{0}^{1} x^{i} x^{i} dx = \int_{0}^{1} x^{i+j} dx = \frac{1}{i+j+1} x^{i+j+1} \Big|_{0}^{1}$$

By Fact 5(2), since (1, x, x^{2} (are
l. indep, we have $K > 0$
 $\xrightarrow{x^{2}}$

\S To find the symmetric matrix A from the quadratic form

The quadratic form $\mathbf{x}^T A \mathbf{x}$ defined by the symmetric matrix $A = (a_{ij}), a_{ij} = a_{ji}$ (square, of size *n*-by-*n*) is

$$\mathbf{x}^T A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

Q: How do we go "backwards" to find the symmetric A from the quadratic form $\mathbf{x}^T A \mathbf{x}$?

Example 8. Determine if the following quadratic form is positive definite (that is, $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$).

1. In 2 dimensions, suppose

Then
$$A = \begin{bmatrix} 2 & -3 \\ -3 & 3 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & -3 \\ -3 & 3 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & -3 \\ -3 & 3 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 3 & -3 & -3 \\ -3 & 3 & -3 & -3 \end{bmatrix}$.
A 3 not positive definite, guadiant form is
and immensions, suppose
 $\mathbf{x}^T K \mathbf{x} = \mathbf{x}_1^2 + \mathbf{4} \mathbf{x}_1 \mathbf{x}_2 - 2\mathbf{x}_1 \mathbf{x}_3 + 6\mathbf{x}_2^2 + 7\mathbf{x}_3^2$.
Then
 $K = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 6 & 0 \\ -1 & 0 & 7 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 2^{-1} & -1 \\ 0 & 3 & 4 \end{bmatrix}$.
Then $K > 0$. so is its guadiant form.

Poll Question 1: Is the matrix $B = \begin{pmatrix} 1 & 1 \\ 0 & 5 \end{pmatrix}$ positive definite? A) Yes B) No Poll Question 2: Is the matrix $B = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$ positive definite? A) Yes B) No Recall: to identify 2 × 2 positive definite matrix: $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive definite if and only if a > 0 and $ac - b^2 > 0$

* The University provides **peer tutor service**, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)