Lecture 21: Quick review from previous lecture

• Let V be any inner product space. The **Gram matrix** for vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is given by

$$K = \begin{pmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_1, \mathbf{v}_n \rangle \\ \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_2, \mathbf{v}_n \rangle \\ \vdots & \vdots & \vdots \\ \langle \mathbf{v}_n, \mathbf{v}_1 \rangle & \langle \mathbf{v}_n, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_n, \mathbf{v}_n \rangle \end{pmatrix}$$

- Gram matrices are always **positive semidefinite**
- they are **positive definite** precisely when the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

Today we will discuss

• Continue Sec. 4.1 Orthogonal(Orthonormal) bases.

- Lecture will be recorded -

• The University provides free **peer tutor service**, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

Fact 9: Let
$$K = A^T C A$$
 where A is an $m \times n$ matrix and C is an $m \times m$ off:
positive definite matrix. Then
(1) ker $K = \ker A$
and, moreover, (2) rank $(K) = \operatorname{rank} A$.
(1) Show Ker $A = \ker K$.
(1) Show Ker $A = \ker K$.
(2) Ker $A \subset \ker K$.
(3) Ker $A \subset \ker A$
 $x \in \ker A$, $A \times = 0$. Then $Kx = A^T C A \times = 0$. yields
 $x \cdot \ker K$.
(3) Ker $K \subset \ker A$
 $x \in \ker K$. $K \times = 0$ mplies $A^T (A \times = 0$.
Then $x^T A^T C A \times = 0$.
 $(A^X)^T C (A \times)$
Since $C > 0$ (posi. defi.), one gots $A \times = 0$.
So $x \in \ker A$.
 $B_Y \odot \odot$, we get $\ker K = \ker A$.
(3) We have learn that $A \max$.
 $\operatorname{rank}(A) + \dim (\ker A) = n$.
 $B_Y (1)$, $\dim (\ker A) = \dim (\ker k)$ and
thus, $\operatorname{rank}(A) = \operatorname{rank}(K)$.

•

4 Orthogonality

4.1 Orthogonal and Orthonormal Bases

We've already seen that in an inner product space V, two vectors \mathbf{x} and \mathbf{y} are said to be **orthogonal** if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Definition: Let V be an inner product space. We say that nonzero vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are (mutually) orthogonal if any two vectors are orthogonal, that is,

 $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ if $i \neq j$

If additionally $\|\mathbf{v}_i\| = 1$, we say $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are **orthonormal**.

Example 1. (1) In \mathbb{R}^n equipped with the standard dot product, an *orthonormal* basis is the standard basis:

 $\mathbf{e}_{1} = (1, 0, \dots, 0, 0)^{T}, \qquad \mathbf{e}_{2} = (0, 1, \dots, 0, 0)^{T}, \qquad \mathbf{e}_{n} = (0, 0, \dots, 0, 1)^{T}$ $\{e_{1}, \dots, e_{n}\} \quad \text{is a basis.}$ $\langle e_{:}, e_{j} \rangle = \{0, 1, \dots, 0, 0)^{T}, \qquad \mathbf{e}_{n} = (0, 0, \dots, 0, 1)^{T}$ $(2) \text{ The set} \qquad \{(1, 2)^{T}, (2, -1)^{T}\}$ $\text{ is an orthogonal basis for } \mathbb{R}^{2} \text{ with the standard dot product.} \text{ Use this basis to get}$ $an orthonormal \text{ basis for } \mathbb{R}^{2}.$ $\langle (z), (-1) \rangle = 0.$ $\text{An orthonormal basis for } \mathbb{R}^{2}.$ $\| \mathbf{v}_{1} \| = \int \langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \int \langle (z), (z) \rangle = \int \mathbf{s}.$ Spring 2021

Fact 1: Suppose that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is an orthogonal basis. Then

$$rac{\mathbf{v}_1}{\|\mathbf{v}_1\|},\ldots,rac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$$

form an orthonormal basis.

Fact 2: If nonzero vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are mutually orthogonal, then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

[To see this] Constroler
$$a_{1}v_{1} + \dots + a_{n}v_{n} = 0$$
 Show $a_{1} = \dots = a_{n} = 0$
Inner product with V_{1} :
 $(v_{1}, v_{1}) = \langle a_{1}v_{1} + \dots + a_{n}v_{n}, v_{1} \rangle, \qquad (since \langle v_{i}, v_{j} \rangle = 0)$
 $= a_{1} \langle v_{1}, v_{1} \rangle + \langle \cdots + a_{n} \langle v_{n}, v_{1} \rangle, \qquad (since \langle v_{i}, v_{j} \rangle = 0)$
 $= a_{1} \langle v_{1}, v_{1} \rangle + \langle \cdots + a_{n} \langle v_{n}, v_{1} \rangle, \qquad (since \langle v_{i}, v_{j} \rangle = 0)$
 $= a_{1} \langle v_{1}, v_{1} \rangle + \langle \cdots + a_{n} \langle v_{n}, v_{1} \rangle, \qquad (since \langle v_{i}, v_{j} \rangle = 0)$
 $= a_{1} \langle v_{1}, v_{1} \rangle + \langle \cdots + a_{n} \langle v_{n}, v_{1} \rangle, \qquad (since \langle v_{i}, v_{j} \rangle = 0)$
 $= a_{1} \langle v_{1}, v_{1} \rangle + \langle \cdots + a_{n} \langle v_{n}, v_{1} \rangle, \qquad (since \langle v_{i}, v_{j} \rangle = 0)$
 $= a_{1} \langle v_{1}, v_{1} \rangle + \langle \cdots + a_{n} \langle v_{n}, v_{1} \rangle, \qquad (since \langle v_{i}, v_{j} \rangle = 0)$
 $= a_{1} \langle v_{1}, v_{1} \rangle + \langle v_{1} \rangle + \langle$

Example 2. $\mathbf{v}_1 = (1, 1, 0)^T$ and $\mathbf{v}_2 = (0, 0, 1)^T$ are vectors in \mathbb{R}^3 under the standard dot product. The space $W = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ is the plane x - y = 0 in \mathbb{R}^3 . Then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for W.

So Vi Vi are orthogonal.

basis for their span $W = \text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$.

MATH 4242-Week 8-2 an orthogonal hat
$$4242$$
-Week 8-2 an orthogonal hat 3

Example 3. Explain why vectors $\mathbf{x} = (1, 1, 0)^T$, $\mathbf{y} = (1, -1, 1)^T$, and $\mathbf{z} = (1, -1, -2)^T$ form an orthogonal basis in \mathbb{R}^3 under the standard dot product? Turn them into an orthonormal basis. (1) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle (\mathbf{y}), (\mathbf{y}) \rangle = 0$ $\langle \mathbf{x}, \mathbf{z} \rangle = \langle (\mathbf{y}), (\mathbf{y}) \rangle = 0$ $\langle \mathbf{y}, \mathbf{z} \rangle = \langle (\mathbf{y}), (\mathbf{y}) \rangle = 0$ $\langle \mathbf{y}, \mathbf{z} \rangle = \langle (\mathbf{y}), (\mathbf{y}) \rangle = 1 + 1 - 2 = 0.$ So $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ are unthogonal. By Fact 2, $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ are 1. Indep. Combining dim $(\mathbb{R}^3) = 3$. $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ are 1. Indep. Combining dim $(\mathbb{R}^3) = 3$. $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ are 1. Indep. $\{\mathbf{y}, \mathbf{z}\}$. (2) To get orthonormal basis. $\{\frac{\mathbf{x}}{\mathbf{y}+\mathbf{x}}, \frac{\mathbf{y}}{\mathbf{y}}, \frac{\mathbf{z}}{\mathbf{y}} = (\mathbf{y}+\mathbf{y}), \frac{\mathbf{z}}{\mathbf{y}+\mathbf{y}}, \frac{\mathbf{z}}{\mathbf{y}} = (\mathbf{y}+\mathbf{y}), \frac{\mathbf{z}}{\mathbf{y}} = (\mathbf{z}+\mathbf{y}), \frac{\mathbf{z}}{\mathbf{y}} =$

Q: What are the advantages of orthogonal (orthonormal) bases?

It is simple to find the *coordinates of a vector* in the orthogonal (orthonormal) basis. However, in general this is not so easy if it is not in such basis.

Fact 4: If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is an orthogonal basis in any inner product space V, then for any vector $\mathbf{v} \in V$, we have

$$\mathbf{v} = \frac{\langle \mathbf{v}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \ldots + \frac{\langle \mathbf{v}, \mathbf{v}_n \rangle}{\|\mathbf{v}_n\|^2} \mathbf{v}_n.$$

Moreover, we have

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n \left(\frac{\langle \mathbf{v}, \mathbf{v}_i \rangle}{\|\mathbf{v}_i\|} \right)^2.$$

Let $\mathbf{a}_i = \frac{\langle \mathbf{v}, \mathbf{v}_i \rangle}{\|\mathbf{v}_i\|^2}$ for i = 1, ..., n. We call $(\underline{a_1, \ldots, a_n})^T$ the coordinates of \mathbf{v} in the basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$.

MATH 4242-Week 8-2

[To see this]

Fact 5: If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is an **orthonormal basis** in any inner product space V, then for any vector $\mathbf{v} \in V$, we have $\|\mathbf{v}_i\| = \mathbf{I}$.

$$\|\mathbf{v}_{:}\|=|\quad \text{fact } 4 \implies \mathbf{v}=\langle \mathbf{v},\mathbf{v}_{1}\rangle\mathbf{v}_{1}+\ldots+\langle \mathbf{v},\mathbf{v}_{n}\rangle\mathbf{v}_{n}.$$

Moreover, we have

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n \left(\langle \mathbf{v}, \mathbf{v}_i \rangle \right)^2.$$

Example 4. Consider the same orthogonal basis as in Example 3:

$$\mathbf{x} = (1, 1, 0)^T, \quad \mathbf{y} = (1, -1, 1)^T, \quad \mathbf{z} = (1, -1, -2)^T.$$

Write $\mathbf{v} = (1, 0, 3)^T$ as the linear combination of \mathbf{x} , \mathbf{y} and \mathbf{z} in \mathbb{R}^3 under the standard dot product. (that is, find the coordinates of \mathbf{v} in this orthogonal basis.)

$$MATH 4242-Week 8-2 \qquad \leq V, \times > \\ \mathbf{a}_{1} = \frac{\langle V, \times \rangle}{|| \times ||^{2}} = \frac{\langle (i), (i) \rangle}{\langle (i), (i) \rangle} = \frac{1}{2}$$
 Spring 2021

$$a_{2} = \frac{\langle v, y \rangle}{||y||^{2}} = \frac{\langle \binom{b}{3}, \binom{b}{1}, \binom{b}{1} \rangle}{\langle \binom{b}{1}, \binom{b}{1}, \binom{b}{1} \rangle} = \frac{4}{3}$$

$$a_{3} = \frac{\langle v, z \rangle}{||z||^{2}} = \frac{-5}{6}$$
Then $v = \frac{1}{2}x + \frac{4}{3}y - \frac{5}{6}z$

Example 5. We consider the inner product space $\mathcal{P}^{(2)}([0,1])$ (the set of polynomials of degree ≤ 2) equipped with the L^2 inner product $\langle p,q \rangle = \int_0^1 p(x)q(x)dx$ in the following problems.

(1) The basis
$$1, x, x^2$$
 do NOT form an orthogonal basis in $\mathcal{P}^{(2)}([0, 1])$.
 $\langle 1, \times \rangle = \int_{0}^{1} 1 \cdot \times dx = \frac{1}{2} \times \frac{2}{3} = \frac{1}{2} \neq 0$

(2)
$$\{p_{1}(x) = 1, p_{2}(x) = x - \frac{1}{2}, p_{3}(x) = x^{2} - x + \frac{1}{6}\}$$
 is an orthogonal basis of
 $\mathcal{P}^{(2)}([0,1])$.
 $\langle P_{1}, P_{2} \rangle = \int_{0}^{1} |(x - \frac{1}{2}) dx = \frac{1}{2} x^{2} - \frac{1}{3} x|_{0}^{1} = O$.
 $\langle P_{1}, P_{3} \rangle = \int_{0}^{1} |(x^{2} - x + \frac{1}{2}) dx = \frac{1}{2} x^{3} - \frac{1}{3} x^{2} + \frac{1}{3} x|_{0}^{1}$
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{1}, P_{3} \rangle = 0$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{2}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3}, P_{3} \rangle = - = O$.
 $\langle P_{3},$

MATH 4242-Week 8-2

Poll Question 1: Are $\{(1,0,1)^T, (1,0,-1)^T\}$ orthogonal with respect to the standard dot product

A) YesB) No

* The University provides free **peer tutor service**, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)