Lecture 21: Quick review from previous lecture

- Let V be any inner product space. The $\mathbf{G r a m}$ matrix for vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is given by

$$
K=\left(\begin{array}{cccc}
\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{1}, \mathbf{v}_{n}\right\rangle \\
\left\langle\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{2}, \mathbf{v}_{n}\right\rangle \\
\vdots & \vdots & & \vdots \\
\left\langle\mathbf{v}_{n}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{v}_{n}, \mathbf{v}_{2}\right\rangle & \ldots & \left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle
\end{array}\right)
$$

- Gram matrices are always positive semidefinite
- they are positive definite precisely when the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Today we will discuss

- Continue Sec. 4.1 Orthogonal(Orthonormal) bases.
- Lecture will be recorded -
- The University provides free peer tutor service, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)
\rightarrow Gram matrix with $\langle x, y\rangle=x^{\top} C y, C$ pori
Fact 9: Let $K=A^{T} C A$ where A is an $m \times n$ matrix and C is an $m \times m$ def. . positive definite matrix. Then
(1) $\operatorname{ker} K=\operatorname{ker} A$
and, moreover, (2) $\operatorname{rank}(K)=\operatorname{rank} A$.
(1) Show ken $A=$ ken K.
(1) Ken A C ken K
$x \in \operatorname{ker} A, A x=0$. Then $K_{x}=A^{T} C A x=0$ yields $x \in$ Kor K.
(2) ked $k \in \operatorname{ker} A$

$$
x \in \text { ger } K . K x=0 \text { implies } A^{\top} C A x=0 \text {. }
$$

Then $x^{\top} A^{\top} C A x=0$.

$$
(A x)^{\prime \prime} C(A x)
$$

since $C>0$ (posi. deti.), one gets $A x=0$.
So $x \in \operatorname{ker} A$.
By (1) (2), we get $\operatorname{ker} K=\operatorname{ken} A$.
(2) We have learn that $A_{m \times n}$.

$$
\begin{aligned}
& \operatorname{rank}(A)+\operatorname{dim}(\operatorname{ker} A)=n . \\
& \operatorname{rank}(k)+\operatorname{dim}(\operatorname{ker} k)=n .
\end{aligned}
$$

By $(1), \operatorname{dim}(\operatorname{ten} A)=\operatorname{dim}(\operatorname{ken} k)$ and thus, $\operatorname{ran} k(A)=\operatorname{san} k(K)$.

4 Orthogonality

4.1 Orthogonal and Orthonormal Bases

We've already seen that in an inner product space V, two vectors \mathbf{x} and \mathbf{y} are said to be orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

Definition: Let V be an inner product space. We say that nonzero vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are (mutually) orthogonal if any two vectors are orthogonal, that is,

$\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0 \quad$ if $i \neq j$

If additionally $\left\|\mathbf{v}_{i}\right\|=1$, we say $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are orthonormal.

Definition: Let V be an inner product space with $\operatorname{dim} V=n$.

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are 1) mutually orthogonal vectors; 2) also a basis ${ }^{a}$ for V, then we say they are an orthogonal basis.
- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are 1) orthonormal; 2) a basis for V,
then we say they are an orthonormal basis.
${ }^{a} \mathrm{~A}$ basis for a vector space V is a linearly independent set of vectors that span V .
Example 1. (1) In \mathbb{R}^{n} equipped with the standard dot product, an orthonormal basis is the standard basis:

$$
\begin{aligned}
& \mathbf{e}_{1}=(1,0, \ldots, 0,0)^{T}, \quad \mathbf{e}_{2}=(0,1, \ldots, 0,0)^{T}, \quad \mathbf{e}_{n}=(0,0, \ldots, 0,1)^{T} \\
& \left\{e_{1}, \ldots, e_{n}\right\} \text { is a basis. } \\
& \left\langle e_{i}, e_{j}\right\rangle=\left\{\begin{array}{ll}
0, i \neq j \\
1, & i=j
\end{array} \quad\left\|e_{i}\right\|=\sqrt{\left\langle e_{i}, e_{i}\right\rangle}=1, \mid \leq i \leq n .\right.
\end{aligned}
$$ is an orthogonal arsis for \mathbb{R}^{2} with the standard dot product. Use this basis to get an orthonormal basis for \mathbb{R}^{2}.

$\left\langle\binom{ 1}{2},\binom{2}{-1}\right\rangle=0$.
An orthonormal basis $\left.\int \frac{1}{\sqrt{5}}\binom{1}{2}, \frac{1}{\sqrt{5}}\binom{2}{-1}\right]$.
MATH 4242-Week 8-2

$$
\left\|v_{1}\right\|=\sqrt{\left\langle v_{1}, v_{1}\right\rangle}=\sqrt{\left\langle\binom{ 1}{2},\binom{1}{2}\right\rangle}=\sqrt{5}
$$

Fact 1: Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis. Then

$$
\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \ldots, \frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|}
$$

form an orthonormal basis.
Fact 2: If nonzero vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are mutually orthogonal, then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.
[To see this] Consider $a_{1} v_{1}+\cdots+a_{n} v_{n}=0$ show $a_{1}=\cdots=a_{n}=0$. Inner product with V_{1} :

$$
\begin{aligned}
&\left\langle 0, v_{1}\right\rangle=\left\langle a_{1} v_{1}+\cdots+a_{n} v_{n}, v_{1}\right\rangle \quad\left(\operatorname{since}\left\langle v_{i}, v_{j}\right\rangle=0\right. \\
&\left.0^{0} \quad 0 \quad i \neq j\right) \\
&=a_{1}\left\langle v_{1}, v_{1}\right\rangle+\cdots+a_{n}\left\langle v_{n}, v_{1}\right\rangle . \\
&=a_{1}\left\|v_{1}\right\|^{2}
\end{aligned}
$$

Since $\left\|v_{1}\right\| \neq 0$, one gets $a_{1}=0$.
Similarly, miner product with v_{i}, we get $a_{i}=0$
Fact 2 directly implies the following result.
Fact 3: Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are nonzero, mutually orthogonal (resp. orthonormal) vectors. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form an orthogonal (resp. orthonormal) basis for their span $W=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

Example 2. $\mathbf{v}_{1}=(1,1,0)^{T}$ and $\mathbf{v}_{2}=(0,0,1)^{T}$ are vectors in \mathbb{R}^{3} under the standard dot product. The space $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is the plane $x-\frac{y}{\mathbf{z}}=0$ in \mathbb{R}^{3}. Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis for W.

$$
\left\langle v_{1}, v_{2}\right\rangle \stackrel{ \pm}{=}\left\langle\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle=0
$$

so v_{1}, v_{2} are orthogonal.
Fact 3

$$
W=\operatorname{span}\left\{v_{1}, v_{2} \mid\right. \text { has }
$$

MATH 4242-Week 8-2 an orthogonal basis $\left\{v_{1}, v_{2} \mid\right.$.

Example 3. Explain why vectors $\mathbf{x}=(1,1,0)^{T}, \mathbf{y}=(1,-1,1)^{T}$, and $\mathbf{z}=$ $(1,-1,-2)^{T}$ form an orthogonal basis in \mathbb{R}^{3} under the standard dot product?
(1)

$$
\begin{aligned}
& \text { Turn them into an orthonormal basis. } \\
& \text { (1) }\langle x, y\rangle=\left\langle\binom{ 1}{1},\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\rangle=0 \quad \begin{array}{c}
\|x\|^{2}=\langle x, x\rangle \\
=2 \\
\|x\|=\sqrt{2} \\
\langle x, z\rangle=\left\langle\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)\right\rangle=0 \\
\langle y, z\rangle=\left\langle\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
-1 \\
-2
\end{array}\right)\right\rangle=1+1-2=0 .
\end{array}
\end{aligned}
$$

So $\{x, y, z\}$ are orthogonal. By Fact 2,
$\{x, y, z\}$ are l. indep. Combining $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$, $\{x, y, z\}$ is an orthogonal basis
(2) To get orthonormal basis.

$$
\left\{\frac{x}{\|x\|}, \frac{y}{\|y\|}, \frac{z}{\|z\|}\right\}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right)\right\}_{k t}
$$

\S Computations in Orthogonal Bases
Q: What are the advantages of orthogonal (orthonormal) bases?
It is simple to find the coordinates of a vector in the orthogonal (orthonormal) basis. However, in general this is not so easy if it is not in such basis.

Fact 4: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis in any inner product space V, then for any vector $\mathbf{v} \in V$, we have

Moreover, we have

$$
\|\mathbf{v}\|^{2}=\sum_{i=1}^{n}\left(\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|}\right)^{2}
$$

Let $a_{i}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}$ for $i=1, \ldots, n$. We call $\left(a_{1}, \ldots, a_{n}\right)^{T}$ the coordinates of \mathbf{v} in the basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
[To see this]
continue next time

Fact 5: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthonormal basis in any inner product space V, then for any vector $\mathbf{v} \in V$, we have $\quad\left\|v_{i}\right\|=1$.

$$
\left\|\mathbf{v}_{i}\right\|=1 \quad \text { Fact } 4 \Rightarrow \mathbf{v}=\left\langle\mathbf{v}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\ldots+\left\langle\mathbf{v}, \mathbf{v}_{n}\right\rangle \mathbf{v}_{n} .
$$

Moreover, we have

$$
\|\mathbf{v}\|^{2}=\sum_{i=1}^{n}\left(\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle\right)^{2}
$$

Example 4. Consider the same orthogonal basis as in Example 3:

$$
\mathbf{x}=(1,1,0)^{T}, \quad \mathbf{y}=(1,-1,1)^{T}, \quad \mathbf{z}=(1,-1,-2)^{T}
$$

Write $\mathbf{v}=(1,0,3)^{T}$ as the linear combination of \mathbf{x}, \mathbf{y} and \mathbf{z} in \mathbb{R}^{3} under the standard dot product. (that is, find the coordinates of \mathbf{v} in this orthogonal basis.)

$$
\begin{aligned}
& a_{2}=\frac{\langle v, y\rangle}{\|y\|^{2}}=\frac{\left\langle\left(\begin{array}{c}
1 \\
3 \\
3
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\rangle}{\left\langle\binom{ 1}{1},\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)\right\rangle}=\frac{4}{3} . \\
& a_{3}=\frac{\langle v, z\rangle}{\|z\|^{2}}=\frac{-5}{6} .
\end{aligned}
$$

Then $v=\frac{1}{2} x+\frac{4}{3} y-\frac{5}{6} z$.
Example 5. We consider the inner product space $\mathcal{P}^{(2)}([0,1])$ (the set of polynomials of degree ≤ 2) equipped with the L^{2} inner product $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$ in the following problems.
(1) The basis $1, x, x^{2}$ do HOT form an orthogonal basis in $\mathcal{P}^{(2)}([0,1])$.

$$
\langle 1, x\rangle=\int_{0}^{1} 1 \cdot x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2} \neq 0 .
$$

(2) $\left\{p_{1}(x)=1, p_{2}(x)=x-\frac{1}{2}, p_{3}(x)=x^{2}-x+\frac{1}{6}\right\}$ is an orthogonal basis of

$$
\begin{aligned}
& \left\langle\mathcal{P}^{(2)}([0,1])\right. \\
& \left\langle p_{1}, p_{2}\right\rangle=\int_{0}^{1} 1\left(x-\frac{1}{2}\right) d x=\frac{1}{2} x^{2}-\left.\frac{1}{2} x\right|_{0} ^{1}=0 \\
& \left\langle p_{1}, p_{3}\right\rangle=\int_{0}^{1} 1\left(x^{2}-x+\frac{1}{6}\right) d x=\frac{1}{3} x^{3}-\frac{1}{5} x^{2}+\left.\frac{1}{6} x\right|_{0} ^{1} \\
& \left\langle p_{2}, p_{3}\right\rangle=0
\end{aligned}
$$

Since $\left\{P_{1}, P_{2}, P_{3}\right\}$ are orthogonal, Fact 2 implies $\left\{P_{1}, P_{2}, P_{3}\right\}$ are l. indep. To gather with $\left.\operatorname{dim}\left(P^{2_{1}}([0,1])\right)=3, \mid p_{1}, p_{2}, P_{3}\right)$ is an orthogand basis for ping $20(0,10)$

Poll Question 1: Are $\left\{(1,0,1)^{T},(1,0,-1)^{T}\right\}$ orthogonal with respect to the standard dot product
W) Yes
B) No

Poll Question 2: Are $\left\{(1,0,1)^{T},(1,0,-1)^{T}\right\}$ orthogonal with respect to
 B) No

* The University provides free peer tutor service, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

