
Lecture 22: Quick review from previous lecture

• If v1, . . . ,vn are nonzero vectors that are mutually orthogonal, meaning
hvi,vji = 0 if i 6= j,

mutually orthogonal ) v1, . . . ,vn are linearly independent

• If v1, . . . ,vn is a basis for V and orthogonal (orthonormal), we call they are
orthogonal (orthonormal) basis.

• If v1, . . . ,vn is an “orthogonal” basis in any inner product space V , then for
any vector v 2 V we have

v = a1v1 + · · · + anvn,

where the coordinates of v is this basis is given by

ai =
hv,vii
kvik2

, i = 1, · · · , n.

—————————————————————————————————
Today we will discuss

• Sec. 4.1 Orthogonal(Orthonormal) bases.

• Sec. 4.2 The Gram-Schmidt process.

- Lecture will be recorded -

—————————————————————————————————

• HW7 due today at 6pm.
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It is simple to find the coordinates of a vector in the orthogonal (orthonormal)
basis. However, in general this is not so easy if it is not in such basis.

Fact 4: If v1, . . . ,vn is an orthogonal basis in any inner product space V ,
then for any vector v 2 V , we have

v =
hv,v1i
kv1k2

v1 + . . . +
hv,vni
kvnk2

vn.

Moreover, we have

kvk2 =
nX

i=1

✓
hv,vii
kvik

◆2

.

Let ai =
hv,vii
kvik2

for i = 1, . . . , n. We call (a1, . . . , an)T the coordinates of v in

the basis {v1, . . . ,vn}.

[To see this]
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Example 5. We consider the inner product space P (2)([0, 1]) (the set of polyno-
mials of degree  2) equipped with the L2 inner product hp, qi =

R 1
0 p(x)q(x)dx

in the following problems.

(1) The basis 1, x, x2 do NOT form an orthogonal basis in P (2)([0, 1]).

(2)
�
p1(x) = 1, p2(x) = x� 1

2, p3(x) = x2 � x + 1
6

 
is an orthogonal basis of

P (2)([0, 1]).

[(1) and (2) were discussed in Lecture 21]

(3) Write p(x) = x2 + x + 1 in terms of the basis p1, p2, p3 in (2).
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4.2 The Gram-Schmidt Process

Q: How can we construct the orthogonal (or orthonormal) bases?
This can be done by the algorithm, known as the Gram-Schmidt process.
§ Given 1 nonzero vectors v1 and another vector w

Q: How do we make up an vector v2 orthogonal to v1 so that it forms an
orthogonal set that spans the same subspace as span{v1,w}?

§ Given 2 orthogonal nonzero vectors v1,v2, another vector w

Q: How do we make up an vector v3 orthogonal to both v1,v2? In particular,
the vectors {v1,v2,v3} spans the same subspace as span{v1,v2,w}?
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§ General case

Given nonzero orthogonal vectors v1, . . . ,vn, then for any vector w,

x =
nX

i=1

hw,vii
kvik2

vi

is called the orthogonal projection of w onto span{v1, . . . ,vn}.
* Note that x is the vector nearest to w in span{v1, . . . ,vn}. Also we have

span{v1,v2, . . . ,vn,w} = span{v1,v2, . . . ,vn,vn+1}.

Fact 1: The vector

vn+1 = w � x = w �
 

nX

i=1

hw,vii
kvik2

vi

!

is orthogonal to each of v1, . . . ,vn.
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§ The Gram-Schmidt process
We start with any basis {w1, . . . ,wn} for the inner product space V .

We then orthogonalize each one to the preceding ones, building up an “orthogonal
basis” as we go.

v1 = w1

v2 = w2 �
hw2,v1i
kv1k2

v1

v3 = w3 �
hw3,v1i
kv1k2

v1 �
hw3,v2i
kv2k2

v2

... ...

vn = wn �
hwn,v1i
kv1k2

v1 � . . .� hwn,vn�1i
kvn�1k2

vn�1

Then
{v1, . . . ,vn} is an orthogonal basis

and, moreover,

{ v1

kv1k
, . . . ,

vn

kvnk
} is an orthonormal basis

Example 1. Consider the vectors

w1 = (1, 1, 0)T , w2 = (0, 1, 1)T , w3 = (1, 0, 1)T

that form a basis of R3 under the standard dot product. To construct an orthogonal
basis and an orthonormal basis using the Gram-Schmidt process.
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