Lecture 22: Quick review from previous lecture

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are nonzero vectors that are mutually orthogonal, meaning $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0$ if $i \neq j$,
mutually orthogonal $\Rightarrow \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent
- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for V and orthogonal (orthonormal), we call they are orthogonal (orthonormal) basis.
- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an "orthogonal" basis in any inner product space V, then for any vector $\mathbf{v} \in V$ we have

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}
$$

where the coordinates of $\mathbf{v}_{\boldsymbol{i}}^{i \boldsymbol{n}}$ this basis is given by

$$
\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}\right)^{\top} a_{i}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}, i=1, \cdots, n
$$

Today we will discuss

- Sec. 4.1 Orthogonal(Orthonormal) bases.
- Sec. 4.2 The Gram-Schmidt process.
- Lecture will be recorded -
- HW7 due today at 6 pm .

It is simple to find the coordinates of a vector in the orthogonal (orthonormal) basis. However, in general this is not so easy if it is not in such basis.

Fact 4: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis in any inner product space V, then for any vector $\mathbf{v} \in V$, we have

$$
\mathbf{v}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\ldots+\frac{\left\langle\mathbf{v}, \mathbf{v}_{n}\right\rangle}{\left\|\mathbf{v}_{n}\right\|^{2}} \mathbf{v}_{n}
$$

Moreover, we have

$$
\|\mathbf{v}\|^{2}=\sum_{i=1}^{n}\left(\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|}\right)^{2}
$$

Let $a_{i}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}$ for $i=1, \ldots, n$. We call $\left(a_{1}, \ldots, a_{n}\right)^{T}$ the coordinates of \mathbf{v} in the basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
${ }^{(1)}$ 'Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis, for any
[To see this] Since $\left\{V_{1}, \ldots, V_{n}\right\}$ is a basis, for any vector $v \in U$, we can express v as

Inner product with v_{1} :

$$
\begin{aligned}
& \text { er product with } v_{1}: \\
&\left\langle v, v_{1}\right\rangle=\left\langle a_{1} v_{1}+\ldots+a_{n} v_{n}, v_{1}\right\rangle \\
&=a_{1}\left\langle v_{1}, v_{1}\right\rangle+a_{2}\left\langle v_{2}, v_{1}\right\rangle+\ldots+a_{n}\left\langle\psi_{n}, v\right\rangle \\
&\left\langle v_{i}, v_{j}\right\rangle=0 \\
&i \neq j\rangle \\
&=a_{1}\left\|v_{1}\right\|^{2}
\end{aligned}
$$

Then $a_{1}=\frac{\left\langle v, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}$. Similarly, $a_{i}=\frac{\left\langle v, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}$
(2)

$$
\begin{aligned}
\|v\|^{2}=\langle v, v\rangle & =\left\langle a_{1} v_{1}+\ldots+a_{n} v_{n}, a_{1} v_{1}+\cdots+a_{n} v_{n}\right\rangle \\
& =a_{1}^{2}\left\langle v_{1}, v_{1}\right\rangle+\cdots+a_{n}^{2}\left\langle v_{n}, v_{n}\right\rangle \\
& =\left(\frac{\left\langle v, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}\right)^{2}\left\|v_{1}\right\|^{2}+\cdots+\left(\frac{\left\langle v_{1} v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}}\right)^{2}\left\|v_{n}\right\|^{2} \\
& =\frac{\left\langle v_{1}, v_{1}\right\rangle^{2}}{\left\|v_{1}\right\|^{2}}+\cdots+\frac{\left\langle v, v_{n}\right\rangle^{2}}{\left\|v_{n}\right\|^{2}} \text { Spring 20\%\% }
\end{aligned}
$$

Example 5. We consider the inner product space $\mathcal{P}^{(2)}([0,1])$ (the set of polynomials of degree ≤ 2) equipped with the L^{2} inner product $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$ in the following problems.
(1) The basis $1, x, x^{2}$ do NOT form an orthogonal basis in $\mathcal{P}^{(2)}([0,1])$.
(2) $\left\{p_{1}(x)=1, p_{2}(x)=x-\frac{1}{2}, p_{3}(x)=x^{2}-x+\frac{1}{6}\right\}$ is an orthogonal basis of $\mathcal{P}^{(2)}([0,1])$.
[(1) and (2) were discussed in Lecture 21]
(3)

(1)

$$
\begin{aligned}
\left\langle P, P_{1}\right\rangle & =\int_{0}^{1}\left(x^{2}+x+1\right) 1 d x \\
& =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\left.x\right|_{0} ^{1}=11 / 6 \\
\left\|P_{1}\right\|^{2} & =\left\langle p_{1}, P_{1}\right\rangle=\int_{0}^{1} 1^{2} d x=1
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { 2) }\left\langle p_{1} p_{2}\right\rangle=\int_{0}^{1}\left(x^{2}+x+1\right)\left(x-\frac{1}{2}\right) d x=1 / 6 \\
& \left\|p_{2}\right\|^{2}=\left\langle p_{2}, p_{2}\right\rangle=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=1 / 12 \\
& a_{2}=\frac{\left\langle p_{1} p_{2}\right\rangle}{\left\|p_{2}\right\|^{2}}=\frac{2}{x}
\end{aligned}
$$

(3) $a_{3}=\frac{\left\langle p_{1} p_{3}\right\rangle}{\left\|p_{3}\right\|^{2}}=1$. Then $p=\frac{11}{6} p_{1}+2 p_{2}+p_{3}$

MATH 4242 -Week fe se also FX 4.11 in P. 190 in Jontrapok)
4.2 The Gram-Schmidt Process

Q: How can we construct the orthogonal (or orthonormal) bases?
This can be done by the algorithm, known as the Gram-Schmidt process.
§ Given 1 nonzero vectors v_{1} and another vector w
Q: How do we make up an vector \mathbf{v}_{2} orthogonal to \mathbf{v}_{1} so that it forms an orthogonalssed, that spans the same subspace as $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{w}\right\}$?

$\|x\|=\|\omega\| \cos \theta$

$$
=\| w_{1} \left\lvert\, \frac{\left\langle\omega, v_{1}\right\rangle}{\|\psi\|\left\|v_{1}\right\|}\right.
$$

$$
=\frac{\left\langle w, v_{1}\right\rangle}{\|v,\|}
$$

$x=\frac{\left\langle w, v_{1}\right\rangle}{\left\|v_{1}\right\|} \frac{v_{1}}{\left\|v_{1}\right\|}=\frac{\left\langle w, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}$ (orthogonal projection of w
Given 2 orthogolnaiketizero vectors v_{1}, v_{2}, another vector ${ }_{W}{ }_{w}$ to spanjv 3)
Q: How do we make up an vector \mathbf{v}_{3} orthogonal to both $\mathbf{v}_{1}, \mathbf{v}_{2}$? In particular, the vectờ $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ spans the same subspace as $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{w}\right\}$?

$$
\begin{aligned}
V_{3} & =w-x \\
& =w-\left(\frac{\left\langle w, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle w, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}\right)
\end{aligned}
$$

$$
x=\frac{\left\langle w, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle w, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}
$$

(orthogonal projection of w onto $\operatorname{span}\left\{v_{1}, v_{2}\right\}$)

Given nonzero orthogonal
lectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then for any vector \mathbf{w},

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{w}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}} \mathbf{v}_{i}
$$

is called the orthogonal projection of \mathbf{w} onto $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

* Note that \mathbf{x} is the vector nearest to \mathbf{w} in $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Also we have

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}, \mathbf{w}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}, \mathbf{v}_{n+1}\right\}
$$

Fact 1: The vector

$$
\mathbf{v}_{n+1}=\mathrm{w}-\mathbf{x}=\mathrm{w}-\left(\sum_{i=1}^{n} \frac{\left\langle\mathrm{w}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}} \mathbf{v}_{i}\right)
$$

is orthogonal to each of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
Check: $\left\langle v_{n+1}, v_{1}\right\rangle=0, \ldots,\left\langle v_{n+1}, v_{n}\right\rangle=0$
§ The Gram-Schmidt process
We start with any basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ for the inner product space V.
We then orthogonalize each one to the preceding ones, building up an "orthogonal basis" as we go.

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{w}_{1} \quad \overbrace{\left.\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle}^{\text {orthogonal projection of }} \mathbf{w}_{\mathbf{2}} \\
\mathbf{v}_{2} & =\mathbf{w}_{2}-\frac{\mathbf{w}^{2}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{w}_{3}-\frac{\left\langle\mathbf{w}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{w}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2} \\
\vdots & \vdots \\
\mathbf{v}_{n} & =\mathbf{w}_{n}-\frac{\left\langle\mathbf{w}_{n}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\ldots-\frac{\left\langle\mathbf{w}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\|\mathbf{v}_{n-1}\right\|^{2}} \mathbf{v}_{n-1}
\end{aligned}
$$

Then
$\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthogonal basis
and, moreover,

$$
\left\{\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \ldots, \frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|}\right\}
$$

Example 1. Consider the vectors
(2) $\left\|u_{i}\right\|=1$

$$
\mathbf{w}_{1}=(1,1,0)^{T}, \quad \mathbf{w}_{2}=(0,1,1)^{T}, \quad \mathbf{w}_{3}=(1,0,1)^{T}
$$

that form basis f \mathbb{R}^{3} under the standard dot product To construct an orthogonal basis and an orthonormal basis using the Gram-Schmidt process.

By Gram Schmidt, we get

$$
v_{1}=w_{1}=\binom{1}{0}
$$

$$
{ }_{\text {MaTH, } 22,2 \text { We ab } s .3} v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}
$$

$$
\begin{aligned}
& =\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{\left\langle\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\rangle}{\left\langle\binom{ 1}{0},\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle}\binom{1}{0} \\
& =\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right) \\
& v_{3}=w_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2} \\
& =\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\binom{1}{0}\right\rangle}{\left\langle\binom{ 1}{\vdots},\binom{1}{0}\right\rangle}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{\left\langle\binom{ 1}{0},\left(\begin{array}{c}
-1 / 2 \\
1 \\
1
\end{array}\right)\right\rangle}{\left\langle\binom{-1 / 2}{1},\left(\begin{array}{c}
-1 / 2 \\
1 \\
1
\end{array}\right)\right\rangle}\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right) \\
& =\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{c}
1 / 2 \\
3 / 2
\end{array} \begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right) . \\
& =\left(\begin{array}{l}
1-\frac{1}{2}+\frac{1}{6} \\
0-\frac{1}{2}-\frac{1}{6} \\
1-\frac{1}{3}
\end{array}\right)=\left(\begin{array}{c}
2 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right)^{\text {¹ }}
\end{aligned}
$$

Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis Turn them into orthonormal basis:

$$
\begin{aligned}
& \left\{\frac{v_{1}}{\left\|v_{1}\right\|}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\left\|v_{3}\right\|}\right\} . \\
= & \left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), 7 \sqrt{\frac{2}{3}}\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right), \frac{\sqrt{3}}{2}\left(\begin{array}{c}
2 / 3 \\
-2 / 3 \sin \\
2 / 3
\end{array}\right)\right\}
\end{aligned}
$$

