Lecture 23: Quick review from previous lecture

- (Gram-Schmidt Process)

Suppose that $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ are linearly independent. $\quad \ddot{o}_{1}-$

Today we will discuss

- Sec. 4.2 The Gram-Schmidt process.
- Sec. 4.3 The Orthogonal Matrices
- Lecture will be recorded -

Example 2. We know that $\left\{1, x, x^{2}\right\}$ forms a basis for $\mathcal{P}^{(2)}([0,1])$, the space of polynomials of degree ≤ 2 on $[0,1]$. Let's turn them into an orthonormal basis, with respect to the usual L^{2} inner product.
b. Gram Schmidt process, we turn them into orthogonal vectors.

$$
\begin{aligned}
P_{1} & =1 \\
p_{2} & =x-\frac{\left\langle x, p_{1}\right\rangle}{\left\|p_{1}\right\|^{2}} p_{1} \\
& =x-\frac{1}{2} \\
0\left\langle x, p_{1}\right\rangle & =\int_{0}^{1} x 1 d x=\frac{1}{2} \\
\left\|p_{1}\right\|^{2} & =\left\langle p_{1}, p_{1}\right\rangle=\int_{0}^{1} 1 d x=1 \\
P_{3} & =x^{2}-\frac{\left\langle x^{2}, p_{1}\right\rangle}{\left\|P_{1}\right\|^{2}} p_{1}-\frac{\left\langle x^{2} p_{2}\right\rangle}{\left\|p_{2}\right\|^{2}} p_{2} \\
\left\langle x^{2}, P_{1}\right\rangle & =\int_{0}^{1} x^{2} \cdot 1 d x=1 / 3 \\
\left\langle x^{2}, P_{2}\right\rangle & =\int_{0}^{1} x^{2}\left(x-\frac{1}{2}\right) d x=\frac{1}{12} \\
\left\|P_{1}\right\|^{2} & =1 \\
\left\|P_{2}\right\|^{2} & =\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\int_{0}^{1} x^{2}-x+\frac{1}{4} d x=1 / 12
\end{aligned}
$$

Then

$$
P_{3}=x^{2}-\frac{\frac{1}{3}}{1} 1-\frac{\frac{1}{12}}{\frac{1}{12}}\left(x-\frac{1}{2}\right)
$$

$$
=x^{2}-x+\frac{1}{6}
$$

Now we get orthogonal basis $\left\{p_{1}, p_{2}, p_{3}\right\}$.
Thus, a_{n} orthonormal basis is

$$
\begin{aligned}
& \left\|P_{2}\right\|^{2}=\frac{1}{12}, \quad\left\{P_{2} \|=\sqrt{\frac{1}{12}}, \frac{P_{1}}{\left\|P_{1}\right\|}, \frac{P_{3}}{\left\|P_{2}\right\|}, \frac{\left\|P_{3}\right\|}{}\right. \text {. } \\
& { }^{\text {MATH } 4242 \text {-Week } 9-1}=\left\{1,\left[\frac{x-\frac{1}{2}}{\frac{1}{\sqrt{2}}}, \frac{P_{3}}{\left\|P_{3}\right\|}\right]\right\} \\
& \text { Exercise }
\end{aligned}
$$

Example 3. Let the subspace $W \subset \mathbb{R}^{4}$ consisting of all vectors orthogonal to $\mathbf{a}=(1,1,1,0)^{T}$. Find an orthonormal basis for W under the standard dot product.
(1) Find $w=\left\{\left.\vec{x}=\left(\begin{array}{l}a \\ b \\ d \\ d\end{array}\right) \in \mathbb{R}^{4} \right\rvert\,\langle\vec{x}, \vec{a}\rangle=0\right\}$

$$
0=\langle\vec{x}, \vec{a}\rangle=a+b+c=\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
b \\
d
\end{array}\right] \text { (linear } \begin{gathered}
\text { system }) ~
\end{gathered}
$$

Free variables: b, c, d

$$
\begin{aligned}
& a=-b-c, \\
& W=\left\{\left(\begin{array}{c}
-b-c \\
b \\
c
\end{array}\right)\right]
\end{aligned}
$$

A basis of/ $\underbrace{}_{b=1, c=d=0} \sum_{\substack{ \\c=1, d=b=0}}^{\bigcup_{d=1, \quad b=c=0}}$

$$
\begin{aligned}
& \left\{\underset{w_{1}}{\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right),}\right.
\end{aligned}
$$

(2) Using $G-S$ process.

$$
\begin{aligned}
v_{1} & =w_{1}=\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right) \\
v_{2} & =w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=\left(\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
\vdots \\
0
\end{array}\right) \\
v_{3} & =w_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1} \\
& =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis
So, O.N.B. is $\left\{\frac{v_{1}}{\left\|v_{1}\right\|}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\left\|v_{3}\right\|_{1}}\right\}$

$$
={ }^{3}\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
\vdots \\
0
\end{array}\right), \pi^{\frac{1}{n v_{2} \|}}\left(\begin{array}{c}
-y_{2} \\
-1 / 2 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{l}
\text { Spplloz2 } \\
0 \\
0
\end{array}\right)^{2}\right\}
$$

4.3 Orthogonal Matrices

Definition: A square matrix A is called an orthogonal matrix if it satisfies

$$
A^{T} A=A A^{T}=I
$$

Recall : We call X is the inverse of A if

$$
X A=A X=I . \quad \text { Denote } \quad X=A^{-1}
$$

Some Properties about an orthogonal matrix A :
Fact 1: Let A be an orthogonal matrix.
(1) The inverse of A is

$$
A^{T}=A^{-1}
$$

(2) The solution to the linear system $A \mathbf{x}=\mathbf{v}$ is $\mathbf{x}=A^{T} \mathbf{v}^{a}{ }^{a}$
(3) $\operatorname{det}(A)= \pm 1$.
${ }^{a}$ Thus there is NO need to apply Gaussian elimination to solve this system
(2). $A x=V$.

$$
\begin{aligned}
& A^{\top}(A x)=A^{\top} V \\
& I^{\prime \prime} Q_{\text {since }} A^{\top} A=I . \\
& x^{\prime \prime}
\end{aligned}
$$

(3)

$$
\begin{aligned}
A^{\top} A=I \Rightarrow \operatorname{det} I=\operatorname{det}\left(A^{\top} A\right) & =\operatorname{det} A^{\top} \operatorname{det} A \\
& =(\operatorname{det} A)^{2} \\
\text { we have } & \operatorname{det} A
\end{aligned}
$$

Fact 2: A square matrix A is an orthogonal matrix if and only if its columns form an orthonormal basis on \mathbb{R}^{n} with respect to the Euclidean dot product.
[To see this:] $A=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]_{n \times n}$. Since A is orthogonal,

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 0 \\
0 & \ddots & \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
v_{1}^{\top} v_{1} & v_{1}^{\top} v_{2} & \cdots & v_{1}^{\top} v_{n} \\
\vdots & \vdots & \vdots \\
v_{n}^{\top} v_{1} & v_{n}^{\top} v_{2} & \cdots v_{n}^{\top} v_{n}
\end{array}\right] } & \Rightarrow \begin{array}{ll}
\left\|v_{i}\right\|=1, & 1 \leq i \leq n \\
v_{i}^{\top} v_{j}=0, & i \neq j
\end{array} \\
& \Rightarrow\left[v_{i}\right\} \text { is } 0 . N . B
\end{aligned}
$$

Fact 3: If A is orthogonal, so is A^{T} (since $\left(A^{T}\right)^{T}=A$).

* This implies that the column vectors of A^{T} (they are row vectors of A) also from an orthonormal basis of \mathbb{R}^{n}.

Example 1. Permutation matrix $P=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ is orthogonal.
Method 1: $\quad P^{\top} P=P P^{\top}=I_{3}$
Method 2 : Checking (rows) columns are O.N.B.

* One can easily see that the rows (columns) of the above matrix form an orthonormal basis for \mathbb{R}^{3}.

Example 2.
(1) Is $B=\left(\binom{1}{2}-\binom{-2}{1}\right.$ orthogonal? NO since $\operatorname{det} B \neq 1$.
(2) How to turn B in (1) into an orthogonal matrix?
$\left\langle v_{1}, v_{2}\right\rangle=0$. Then $\left\{v_{1}, v_{2} \mid\right.$ is orthogonal.
$\xrightarrow{\text { Fact } 2}$ Tum them into orthunomal basis by orthogonal mater

$$
\begin{aligned}
& q_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}, q_{2}=\frac{v_{2}}{\left\|v_{2}\right\|} \text {. Then } B \rightarrow \stackrel{Q}{Q}=\left[q_{q_{1 i n g}} q_{21}\right] \\
& =\left[\begin{array}{ll}
1 / \sqrt{5} & -2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right]
\end{aligned}
$$

Fact 4: If A nd B are orthogonal matrices, then $A B$ is orthogonal too.
[To see this:] $(A B)^{\top} A B=B^{\top} A^{\top} A B \stackrel{\rightharpoonup}{=} B^{\top} I B$

$$
\begin{aligned}
& =B^{\top} B I \text { since } B_{i s} \text { orthogun-1. } \\
& =I
\end{aligned}
$$

$(A B)(A B)^{\top}=I$ (Exercise).

Fact 5: If A is orthogonal, then the matrix A preserve length in the sense that

$$
\|A \mathbf{x}\|=\|\mathbf{x}\| \quad \text { for all } x \in \mathbb{R}^{n} \quad \text { (Homework problem) }
$$

where $\|\cdot\|$ denotes the 2 -norm.

\S The QR Factorization

Q: How do we turn the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$ to an orthogonal matrix?
Answer: This can be achieved by applying the Gram-Schmidt equalion.

Let's revisit the Gram-Schmidt process:
Let

$$
A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right] \text { be } n \times n \underline{\text { nonsingular }} \text { matrix }
$$

where \mathbf{a}_{j} is the $i^{t h}$ column vector of A. Thus, $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ are linearly independent.

Step 1: Turn $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ to orthogonal vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:
$\underset{\operatorname{Gram}}{\operatorname{Gr}} \begin{aligned} \text { Schmidt } \\ \text { process }\end{aligned}\left\{\begin{array}{l}\mathbf{v}_{1}=\mathbf{a}_{1} \\ \mathbf{v}_{2}=\mathbf{a}_{2}-\frac{\left\langle\mathbf{a}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\ \mathbf{v}_{3}=\mathbf{a}_{3}-\frac{\left\langle\mathbf{a}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{a}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{n}=\mathbf{a}_{n}-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\|\mathbf{v}_{n-1}\right\|^{2}} \mathbf{v}_{n-1}\end{array}\right.$
Then

Step 2: Normalize $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ to get orthonormal vectors $\mathbf{q}_{1}, \cdots, \mathbf{q}_{n}$: That is,

$$
\mathbf{q}_{j}=\frac{\mathbf{v}_{j}}{\left\|\mathbf{v}_{j}\right\|}
$$

Then a nonsingular matrix A is turned to an orthogonal matrix Q :

To answer the earlier question:
Example 3. Now let's turn the matrix $A=\binom{1}{2}\binom{1}{1}$ to an orthogonal matrix.
$\boldsymbol{v}_{\mathbf{1}}=\boldsymbol{a}_{\mathbf{1}}$

$$
v_{2}=a_{2}-\frac{\left\langle a_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}
$$

(Continue

$$
q_{i}=v_{i} /\left\|v_{i}\right\| .
$$ Next time

$A \quad Q \quad Q=\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]$

Q: From above example, we have seen that $A \rightarrow Q$. Indeed, we will be able to decompose

$$
A=Q \square
$$

What is this matrix \square that encodes all processes turning A to Q ? This matrix \square is actually upper triangular.

Let's figure this out.
Rewrite Step 1 above as follows:

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{a}_{1} \\
\mathbf{v}_{2} & =\mathbf{a}_{2}-\frac{\left\langle\mathbf{a}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{a}_{3}-\frac{\left\langle\mathbf{a}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{a}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{n} & =\mathbf{a}_{n}-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{a}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\|\mathbf{v}_{n-1}\right\|^{2}} \mathbf{v}_{n-1}
\end{aligned}
$$

Poll Question 1: Then Gram-Schmidt process can turn every linearly independent vectors into mutually orthogonal vectors?
14) Yes
B) No

