
Lecture 23: Quick review from previous lecture

• (Gram-Schmidt Process)
Suppose that a1, · · · , an are linearly independent.

Turn a1, · · · , an to orthogonal vectors v1, · · · ,vn:

v1 = a1

v2 = a2 �
ha2,v1i
kv1k2

v1

v3 = a3 �
ha3,v1i
kv1k2

v1 �
ha3,v2i
kv2k2

v2

...

vn = an �
han,v1i
kv1k2

v1 � · · ·� han,vn�1i
kvn�1k2

vn�1

—————————————————————————————————
Today we will discuss

• Sec. 4.2 The Gram-Schmidt process.

• Sec. 4.3 The Orthogonal Matrices

- Lecture will be recorded -

—————————————————————————————————
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Example 2. We know that {1, x, x2} forms a basis for P (2)([0, 1]), the space of
polynomials of degree  2 on [0, 1]. Let’s turn them into an orthonormal basis,
with respect to the usual L2 inner product.
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By Gram- Schmidt process, we turn them into

orthogonal vectors .
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Example 3. Let the subspace W ⇢ R4 consisting of all vectors orthogonal to
a = (1, 1, 1, 0)T . Find an orthonormal basis forW under the standard dot product.
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4.3 Orthogonal Matrices

Definition: A square matrix A is called an orthogonal matrix if it satisfies

ATA = AAT = I.

Some Properties about an orthogonal matrix A:

Fact 1: Let A be an orthogonal matrix.

(1) The inverse of A is
AT = A�1.

(2) The solution to the linear system Ax = v is x = AT
v.a

(3) det(A) = ±1.
a
Thus there is NO need to apply Gaussian elimination to solve this system

Moreover, we have

Fact 2: A square matrix A is an orthogonal matrix if and only if its columns
form an orthonormal basis on Rn with respect to the Euclidean dot product.

[To see this:]
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Fact 3: If A is orthogonal, so is AT (since (AT )T = A).

* This implies that the column vectors of AT (they are row vectors of A) also from
an orthonormal basis of Rn.

Example 1. Permutation matrix P =

0

@
0 0 1
1 0 0
0 1 0

1

A is orthogonal.

* One can easily see that the rows (columns) of the above matrix form an orthonormal basis for R3.

Example 2.

(1) Is B =

✓
1 �2
2 1

◆
orthogonal?

(2) How to turn B in (1) into an orthogonal matrix?
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Fact 4: If A and B are orthogonal matrices, then AB is orthogonal too.

[To see this:]

Fact 5: If A is orthogonal, then the matrix A preserve length in the sense that

kAxk = kxk for all x 2 Rn (Homework problem),

where k · k denotes the 2-norm.

§ The QR Factorization

Q: How do we turn the matrix A =

✓
1 1
2 1

◆
to an orthogonal matrix?

Answer: This can be achieved by applying the Gram-Schmidt equa-

tion.

Let’s revisit the Gram-Schmidt process:
Let

A = [a1 · · · an] be n⇥ n nonsingular matrix

where aj is the ith column vector of A. Thus, a1, · · · , an are linearly independent.
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Step 1: Turn a1, · · · , an to orthogonal vectors v1, · · · ,vn:

v1 = a1

v2 = a2 �
ha2,v1i
kv1k2

v1

v3 = a3 �
ha3,v1i
kv1k2

v1 �
ha3,v2i
kv2k2

v2

...

vn = an �
han,v1i
kv1k2

v1 � · · ·� han,vn�1i
kvn�1k2

vn�1

Then 0

@ a1 a2 · · · an

1

A

| {z }
A

�!|{z}
GramSchmidt

0

@ v1 v2 · · · vn

1

A

| {z }
V

Step 2: Normalize v1, · · · ,vn to get orthonormal vectors q1, · · · ,qn:

That is,

qj =
vj

kvjk

Then a nonsingular matrix A is turned to an orthogonal matrix Q:
0

@ a1 a2 · · · an

1

A

| {z }
A (nonsingular)

�!|{z}
GramSchmidt+Normalization

0

@ q1 q2 · · · qn

1

A

| {z }
Q (orthogonal)
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To answer the earlier question:

Example 3. Now let’s turn the matrix A =

✓
1 1
2 1

◆
to an orthogonal matrix.

Q: From above example, we have seen that A ! Q. Indeed, we will be able to
decompose

A = Q⌅.

What is this matrix ⌅ that encodes all processes turning A to Q? This matrix
⌅ is actually upper triangular.

Let’s figure this out.

Rewrite Step 1 above as follows:

v1 = a1

v2 = a2 �
ha2,v1i
kv1k2

v1

v3 = a3 �
ha3,v1i
kv1k2

v1 �
ha3,v2i
kv2k2

v2

...

vn = an �
han,v1i
kv1k2

v1 � · · ·� han,vn�1i
kvn�1k2

vn�1
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Poll Question 1: Then Gram-Schmidt process can turn every linearly

independent vectors into mutually orthogonal vectors?

A) Yes
B) No
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