Lecture 23: Quick review from previous lecture

Today we will discuss

- Sec. 4.2 The Gram-Schmidt process.
- Sec. 4.3 The Orthogonal Matrices

- Lecture will be recorded -

Example 2. We know that $\{1, x, x^2\}$ forms a basis for $\mathcal{P}^{(2)}([0, 1])$, the space of polynomials of degree ≤ 2 on [0, 1]. Let's turn them into an orthonormal basis, with respect to the usual L^2 inner product. By Gram-Schmidt process, we turn them into orthogonal vectors. $P_1 = I$ $P_2 = \chi - \frac{\langle \chi, P_1 \rangle}{\|P_1\|^2} P_1$ \circ $\langle \times, P_1 \rangle = \int_{-1}^{1} \times 1 \, dx = \left(\frac{1}{2}\right)$ $||P_{1}||^{2} = \langle P_{1}, P_{1} \rangle = \int_{0}^{1} |dx| = (1)$ $P_3 = X^2 - \frac{\langle X^2, P_1 \rangle}{\|P_1\|^2} P_1 - \frac{\langle X^2, P_2 \rangle}{\|P_2\|^2} P_2$ • $\langle x^2, P_i \rangle = \int_{-\infty}^{1} x^2 \cdot 1 \, dx = \frac{1}{2}$ $\langle x^{2}, P_{2} \rangle = \int_{0}^{1} x^{2} (x - \frac{1}{2}) dx = \frac{1}{12}$ 11P, 11² =1 $\|P_{x}\|^{2} = \int_{D}^{1} (x - \frac{1}{2})^{2} dx = \int_{0}^{1} x^{2} - x + \frac{1}{2} dx = \int_{0}^{1} x^{2} - \frac{1}{2} dx = \int_{0}^{1} \frac{1}{2} dx =$ Then $P_3 = x^2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} (x - \frac{1}{2})$ $= x^{2} - x + \frac{1}{6}$ Now we get orthogonal basis [P., P., P.] Thus, an orthonormal basis is 1121-古 $\frac{P_1}{\|P_1\|} - \frac{P_2}{\|P_2\|} - \frac{P_3}{\|P_3\|} = \frac{P_3}{\|P_3\|}$ IRI= find 11831 $\frac{X-\frac{1}{2}}{\frac{1}{2}}, \frac{P_3}{\frac{1}{11}P_{-11}}$ MATH 4242-Week 9-1 Spring 2021

$$\frac{\sqrt{12}(x-\frac{1}{3})}{\text{Example 3. Let the subspace } W \subseteq \mathbb{R}^{2} \text{ consisting of all vectors orthogonal to}} a = (1, 1, 1, 0)^{T}. Find an orthonormal basis for W under the standard dot product.
(1) Timed $W = \{ \vec{x} = \begin{pmatrix} i \\ j \end{pmatrix} \in \mathbb{R}^{4} \mid \langle \vec{x} , \vec{a} \rangle = 0 \}$
 $0 = \langle \vec{x}, \vec{a} \rangle = a + b + c = [1] + 0] \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor + integrave) = (1 + 0)^{T} \begin{bmatrix} a \\ j \end{bmatrix} (lneor$$$

4.3 Orthogonal Matrices

& Exercise tind 11/211

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} v_1^T v_1 & v_1^T v_2 & \cdots & v_1^T v_n \\ \vdots & \vdots & \vdots \\ v_n^T v_1 & v_n^T v_n \end{bmatrix} \implies \begin{bmatrix} ||v_1|| = 1 \\ v_1^T v_1 = 0 \\ \vdots & \vdots \\ v_1^T v_1 = 0 \\ \vdots & v_1^T v_1 \\$$

Fact 3: If A is orthogonal, so is A^T (since $(A^T)^T = A$).

* This implies that the column vectors of A^T (they are row vectors of A) also from an orthonormal basis of \mathbb{R}^n .

Example 1. Permutation matrix
$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 is orthogonal.
Method 1: $P^{T} P = PP^{T} = I_{3}$
Method 2: Checking (NOWS) columns are QN.B.
* One can easily see that the rows (columns) of the above matrix form an orthonormal basis for \mathbb{R}^{3} .
Example 2.
(1) Is $B = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} orthogonal? NO since det $B \neq 1$.$

(2) How to turn B in (1) into an orthogonal matrix?

 $\langle V_1, V_2 \rangle = 0$. Then $\{V_1, V_2\}$ is orthogonal. Fact 2 Turn them into orthonormal basis by orthogonal matrix $B_1 = \frac{V_1}{||V_1||}, \quad Q_2 = \frac{V_2}{5}$ Then $B \longrightarrow Q = [g_{\text{spling}} g_{21}]$ MATH 4242-Week 9-1

Fact 4: If
$$A$$
 and B are orthogonal matrices, then AB is orthogonal too.
[To see this:] $(AB)^{T}AB = B^{T}A^{T}AB \stackrel{sume}{=} B^{T}B = B^{T}B = B^{T}B = I$ (AB) $(AB)^{T} = I$ (Exercise).

§ The QR Factorization

Q: How do we turn the matrix $A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ to an orthogonal matrix? Answer: This can be achieved by applying the Gram-Schmidt equation.

Let's revisit the Gram-Schmidt process:

Let

 $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ be $n \times n$ nonsingular matrix

where \mathbf{a}_j is the *i*th column vector of A. Thus, $\mathbf{a}_1, \cdots, \mathbf{a}_n$ are <u>linearly independent</u>.

Step 1: Turn
$$\mathbf{a}_1, \dots, \mathbf{a}_n$$
 to orthogonal vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$:
Gram
Schmidt
process
 $\mathbf{v}_1 = \mathbf{a}_1$
 $\mathbf{v}_2 = \mathbf{a}_2 - \frac{\langle \mathbf{a}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$
 $\mathbf{v}_3 = \mathbf{a}_3 - \frac{\langle \mathbf{a}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{a}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$
 \vdots
 $\mathbf{v}_n = \mathbf{a}_n - \frac{\langle \mathbf{a}_n, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \dots - \frac{\langle \mathbf{a}_n, \mathbf{v}_{n-1} \rangle}{\|\mathbf{v}_{n-1}\|^2} \mathbf{v}_{n-1}$

Then

Step 2: Normalize $\mathbf{v}_1, \cdots, \mathbf{v}_n$ to get orthonormal vectors $\mathbf{q}_1, \cdots, \mathbf{q}_n$: That is,

$$\mathbf{q}_j = \frac{\mathbf{v}_j}{\|\mathbf{v}_j\|}$$

Then a nonsingular matrix A is turned to an orthogonal matrix Q:

Q: From above example, we have seen that $A \to Q$. Indeed, we will be able to decompose

$$A = Q \blacksquare.$$

What is this matrix \blacksquare that encodes all processes turning A to Q? This matrix \blacksquare is actually upper triangular.

Let's figure this out.

Rewrite Step 1 above as follows:

$$\mathbf{v}_{1} = \mathbf{a}_{1}$$

$$\mathbf{v}_{2} = \mathbf{a}_{2} - \frac{\langle \mathbf{a}_{2}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{a}_{3} - \frac{\langle \mathbf{a}_{3}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\langle \mathbf{a}_{3}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{n} = \mathbf{a}_{n} - \frac{\langle \mathbf{a}_{n}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \dots - \frac{\langle \mathbf{a}_{n}, \mathbf{v}_{n-1} \rangle}{\|\mathbf{v}_{n-1}\|^{2}} \mathbf{v}_{n-1}$$

Poll Question 1: Then Gram-Schmidt process can turn every **linearly independent** vectors into mutually orthogonal vectors?

(M) Yes (B) No