Lecture 24: Quick review from previous lecture

- A square matrix A is called an orthogonal matrix if it satisfies

$$
A^{T} A=A A^{T}=I . \quad \Rightarrow \quad A^{-1}=A^{\top}
$$

- A is an orthogonal matrix if and only if its columns (rows) form an orthonormal basis on \mathbb{R}^{n} with respect to the Euclidean dot product.
- If A and B are orthogonal matrices, then $A B$ is orthogonal too.

Today we will discuss

- Sec. 4.3 Orthogonal Matrices and QR factorization
- Sec. 4.4 Orthogonal Projections

- Lecture will be recorded -

§ The QR Factorization

Q: How do we turn the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$ to an orthogonal matrix?
Answer: This can be achieved by applying the Gram-Schmidt equation.

Let's revisit the Gram-Schmidt process:
Let

$$
A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right] \text { be } n \times n \text { nonsingular matrix }
$$

where \mathbf{a}_{j} is the $i^{\text {th }}$ column vector of A. Thus, $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ arelinearly independent.

Step 1: Use Gram-Schmidt to turn linearly independent $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ to orthogonal vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$.

Step 2: Normalize $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ to get orthonormal vectors $\mathbf{q}_{1}, \cdots, \mathbf{q}_{n}$: That is,

$$
\mathbf{q}_{j}=\frac{\mathbf{v}_{j}}{\left\|\mathbf{v}_{j}\right\|}
$$

Then a nonsingular matrix A is turned to an orthogonal matrix Q :

To answer the earlier question:
Example 3. Now let's turn the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$ to an orthogonal matrix.

1. By $G-s$ process,

$$
\begin{aligned}
& v_{1}=a_{1}=\binom{1}{2} \\
& \left\{\begin{array}{l}
v_{1}=a_{1}=\left(\begin{array}{l}
1 \\
v_{2}
\end{array}=a_{2}-\frac{\left\langle a_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=\binom{1}{1}-\frac{\left\langle\binom{ 1}{1},\binom{1}{2}\right\rangle}{\left\langle\binom{ 1}{2},\binom{1}{2}\right\rangle}\binom{1}{2}\right.
\end{array}\right. \\
& =\binom{1}{1}-\frac{3}{5}\binom{1}{2}=\binom{2 / 5}{-1 / 5} \underset{-\left(\begin{array}{l}
(-1
\end{array}\right)}{\longrightarrow}\left\|v_{2}\right\|=\sqrt{\left(\frac{2}{5}\right)^{2}+\left(\frac{1}{5}\right)^{2}}
\end{aligned}
$$

2. $\quad q_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{5}}\binom{1}{2} ; q_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{\sqrt{5}}\binom{2}{-1}$
$A \longrightarrow Q=\left[\begin{array}{ll}1 / \sqrt{5} & 2 / \sqrt{5} \\ 2 / \sqrt{5} & -1 / \sqrt{5}\end{array}\right]$ (orthogonal matrix)
Q: From above example, we have seen that $A \rightarrow Q$. Indeed, we will be able to decompose

$$
A=Q \square
$$

What is this matrix \square that encodes all processes turning A to Q ? This matrix is actually upper triangular.

Let's figure this out.
In Step 1 above, we did Gram-Schmidt process,

$$
\mathbf{q}_{j}=\frac{\mathbf{v}_{j}}{\left\|\mathbf{v}_{j}\right\|} \underset{r_{j j}=\left\|\mathbf{v}_{j}\right\|}{\Rightarrow} r_{j j} \mathbf{q}_{j}=\mathbf{v}_{j}
$$

We can get

$$
\begin{aligned}
& r_{11} \mathbf{q}_{1}=\mathbf{a}_{1} \\
& r_{22} \mathbf{q}_{2}=\mathbf{a}_{2}-\left\langle, \boldsymbol{\gamma}_{1 \mathbf{2}}\right. \\
& r_{33} \mathbf{q}_{3}=\mathbf{a}_{3}-\underbrace{\left\langle\mathbf{a}_{2}, \mathbf{q}_{1}\right\rangle}_{\mathbf{\gamma}_{13}}\rangle \mathbf{q}_{1} \\
& \vdots \\
&\left.\mathbf{a}_{3}, \mathbf{q}_{1}\right\rangle \\
& \mathbf{q}_{1}-\underbrace{\left\langle\mathbf{a}_{3}, \mathbf{q}_{2}\right.}_{\boldsymbol{r}_{23}}\rangle \mathbf{q}_{2} \\
& r_{n n} \mathbf{q}_{n}=\mathbf{a}_{n}-\left\langle\mathbf{a}_{n}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}-\cdots-\left\langle\mathbf{a}_{n}, \mathbf{q}_{n-1}\right\rangle \mathbf{q}_{n-1}
\end{aligned}
$$

Let $r_{i j}=\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle$, then we reach

$$
\begin{aligned}
\mathbf{a}_{1} & =r_{11} \mathbf{q}_{1} \\
\mathbf{a}_{2} & =r_{12} \mathbf{q}_{1}+r_{22} \mathbf{q}_{2} \\
\mathbf{a}_{3} & =r_{13} \mathbf{q}_{1}+r_{23} \mathbf{q}_{2}+r_{33} \mathbf{q}_{3} \\
& \vdots \\
\mathbf{a}_{n} & =r_{1 n} \mathbf{q}_{1}++r_{2 n} \mathbf{q}_{2}+\cdots+r_{n-1, n} \mathbf{q}_{n-1}+r_{n n} \mathbf{q}_{n}
\end{aligned}
$$

Thus the Gram-Schmidt equations can be recast into an equivalent matrix form:

where

$$
r_{j j}=\left\|\mathbf{v}_{j}\right\|=\left\langle\mathbf{a}_{j}, \mathbf{q}_{j}\right\rangle \quad \text { and } \quad r_{i j}=\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle
$$

This is called the $\mathbf{Q R}$ factorization.
"matrix form" of $G-S$ process.

In conclusion, we have
Fact 6: Every nonsingular matrix can be factored into

$$
A=Q R
$$

the product of an orthogonal matrix Q and an upper triangular matrix R.
Back to Example 3: Find QR factorization of $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$ under the usual dot product. $R=\left[\begin{array}{cc}\gamma_{11} & \gamma_{12} \\ 0 & \gamma_{22}\end{array}\right]=\left[\begin{array}{cc}\sqrt{5} & \frac{2}{\sqrt{3}} \\ 0 & 1 / \sqrt{3}\end{array}\right]^{1}$

$$
r_{11}=\left\|v_{1}\right\|=\sqrt{5}
$$

$$
r_{12}=\left\langle a_{2}, q_{1}\right\rangle=\left\langle\binom{ 1}{1},\binom{1 / \sqrt{5}}{2 / \sqrt{5}}\right\rangle=3 / \sqrt{5}
$$

$r_{22}=\left\|v_{2}\right\|=1 / \sqrt{5}$
Then $A=Q R$
$V_{2}=\binom{2 / 5}{-1 / 5} \quad\left\|v_{2}\right\|=\sqrt{\frac{4+1}{25}}=\sqrt{\frac{1}{5}}$
Example 4. Let $\left.A w_{1} w_{2} w_{3}\right]$ where

$$
\mathbf{w}_{1}=(1,1,0)^{T}, \quad \mathbf{w}_{2}=(0,1,1)^{T}, \quad \mathbf{w}_{3}=(1,0,1)^{T} .
$$

Find the QR factorization of A under the usual dot product.
[Answer:] (1) Find Q. We have seen in Lecture 22, Example 1 how to apply Gram-Schmidt to turn vectors \mathbf{w}_{i} into an orthonormal basis:

$$
\mathbf{q}_{1}=\frac{1}{\sqrt{2}} \underbrace{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)}_{\mathbf{v}_{1}}, \mathbf{q}_{2}=\sqrt{\frac{2}{3}} \underbrace{\left(\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right)}_{\mathbf{v}_{2}}, \mathbf{q}_{3}=\frac{\sqrt{3}}{2} \underbrace{\left(\begin{array}{r}
2 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right)}_{\mathbf{v}_{3}} .
$$

${ }_{\text {MATH } 4242 \text {-Week } 9-2} \quad Q=\left[\begin{array}{lll}q_{1} & q_{2}^{5} & q_{3}\end{array}\right]$

Specifically,

$$
\underbrace{\left(\mathbf{w}_{1}\left|\mathbf{w}_{2}\right| \mathbf{w}_{3}\right)}_{A} \underbrace{\longrightarrow}_{V} \underbrace{\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \mathbf{v}_{3}\right)}_{\text {GramSchmidt }} \underbrace{\longrightarrow}_{\text {Normalization }} \underbrace{\left(\mathbf{q}_{1}\left|\mathbf{q}_{2}\right| \mathbf{q}_{3}\right)}_{Q \text { (orthogonal) }}
$$

(2) It is remaining to find R. That is, $R=\left(\begin{array}{ccc}r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33}\end{array}\right)$ with $r_{j j}=$ $\left\|\mathbf{v}_{j}\right\|=\left\langle\mathbf{a}_{j}, \mathbf{q}_{j}\right\rangle$ and $r_{i j}=\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle$.

$$
\begin{aligned}
& r_{11}=\left\|v_{1}\right\|=\left\|\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\|=\sqrt{2} \\
& r_{22}=\left\|v_{2}\right\|=\left\|\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right)\right\|=\sqrt{3 / 2} . \\
& r_{33}=\left\|v_{3}\right\|=2 / \sqrt{3} . \\
& r_{12}=\left\langle w_{2}, q_{1}\right\rangle=\left\langle\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right)\right\rangle=1 / \sqrt{2} . \\
& r_{13}=\left\langle w_{3}, q_{1}\right\rangle=1 / \sqrt{2} . \\
& r_{23}=\left\langle w_{3}, q_{2}\right\rangle=1 / \sqrt{6} .
\end{aligned}
$$

Then $A=Q R$, where

$$
R=\left[\begin{array}{ccc}
\sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & \sqrt{3} / 2 & 1 / \sqrt{6} \\
0 & 0 & 2 / \sqrt{3}
\end{array}\right]
$$

4.4 Orthogonal Projections and Subspaces

§ Orthogonal projections

Definition: We call a vector \mathbf{x} in an inner product space V is orthogonal to the subspace W of V if it is orthogonal to every vector in W, that is,

$$
\langle\mathbf{x}, \mathbf{y}\rangle=0 \quad \text { for all } \mathbf{y} \in W
$$

Fact 1: Suppose $\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}$ is the basis of W. Thus, \mathbf{x} is orthogonal to $W \Leftrightarrow\left\langle\mathbf{x}, \mathbf{w}_{i}\right\rangle=0, i=1, \cdots, n$.
[To see this: (\Rightarrow) Since $w_{i} \in W,\left\langle x, w_{i}\right\rangle=0,1 \leq i \leq n$. (\Leftarrow) Any $z \in W$, we can write $z=c_{1} w_{1}+\cdots+c_{n} w_{n}$

$$
\langle x, z\rangle=\left\langle x, c_{c_{1} w_{1}+\cdots+c_{w_{n}}}\right\rangle
$$

$$
=C_{1}\left\langle x, \omega_{1}\right\rangle+\cdots+c_{n}\left\langle x_{1} \omega_{n}\right\rangle
$$

$=0$ since $\left\langle x, w_{i}\right\rangle=0$, 1 sisn.
Definition: The orthogonal projection of \mathbf{v} onto the subspace W of V is the element $\mathbf{w} \in W$ such that the difference $\mathbf{z}=\mathbf{v}-\mathbf{w}$ orthogonal to W. We use the notation

$$
\mathrm{z} \perp W .
$$

The orthogonal projection is "unique". Note that such \mathbf{w} is the unique vector in W that is "closet to" \mathbf{v}.

$$
w=\frac{\left\langle v_{0} v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\cdots+\frac{\left\langle v_{1} v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}} v_{n}
$$

w : orthogonal projection of v onto space W
Fact 2: (1) Suppose $\mathbf{v}_{1}, \cdots, \mathbf{v}_{\boldsymbol{n}}$ is an orthogonal basis of subspace W of V. If $\mathbf{w} \in W$ is the orthogonal projection of $\mathbf{v} \in V$ onto W, then

$$
\mathbf{w}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}, \quad \text { where } c_{j}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{j}\right\rangle}{\left\|\mathbf{v}_{j}\right\|^{2}}, \quad j=1, \cdots, n
$$

(2) Suppose $\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}$ is an orthonormal basis of subspace W of V. If $\mathbf{w} \in W$ is the orthogonal projection of $\mathbf{v} \in V$ onto W, then

$$
\mathbf{w}=c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}, \quad \text { where } c_{j}=\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle, \quad j=1, \cdots, n .
$$

Example 1.[p. 214 in Textbook] Suppose that the plane is spanned by the orthogonal vectors $\mathbf{v}_{1}=(1,-2,1)^{T}$ and $\mathbf{v}_{2}=(1,1,1)^{T}$ under the usual dot product. Compute the orthogonal projection of $\mathbf{v}=(1,0,0)^{T}$.

$$
w=\frac{\left\langle v_{1} v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle v, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}
$$

$$
=\left(\begin{array}{l}
1 / 2 \\
0 \\
1 / 2
\end{array}\right)
$$ Remark: Thus, $\left.\mathbf{v}-\sum_{k=1}^{n}\left(\mathbf{v}, \mathbf{u}_{k}\right\rangle \mathbf{u}_{k} \begin{array}{c}-1 / 1 / 2\end{array}\right)$ orthogonal to W, that is, $\left.\left(\begin{array}{c}1 \\ y_{2} \\ -1 / 2\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\rangle=0$.

$$
(\mathbf{v}-\underbrace{\sum_{k=1}^{n}\left\langle\mathbf{v}, \mathbf{u}_{k}\right\rangle \mathbf{u}_{k}}_{\mathbf{w}}) \perp W .
$$

§ Orthogonal Subspaces

Definition: Two subspaces W, Z of V are called orthogonal if every vector in W is orthogonal to every vector in Z, that is,

$$
\langle\mathbf{w}, \mathbf{z}\rangle=0 \quad \text { for all } \mathbf{w} \in W, \mathbf{z} \in Z . \quad \mid \mathbf{Z}
$$

Immediately, we also have
Fact 3: If $\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}\right\}$ span W and $\left\{\mathbf{z}_{1}, \cdots, \mathbf{z}_{k}\right\}$ span Z, then

W, Z are orthogonal $\Longleftrightarrow\left\langle\mathbf{w}_{i}, \mathbf{z}_{j}\right\rangle=0$

for all $1 \leq i \leq n, 1 \leq j \leq k$.

Definition: If W is a subspace of V, its orthogonal complement W^{\perp} (pronounced " W perp") is the set of all vectors orthogonal to W, that is,

$$
W^{\perp}=\{\mathbf{v} \in V:\langle\mathbf{v}, \mathbf{w}\rangle=0 \text { for all } \mathbf{w} \in W\}
$$

EX: $\quad w=\operatorname{span}\left[\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right]$. Then

$$
W^{\perp}=? \text { yt plane }
$$

- It can be checked that W^{\perp} is also a subspace of V.
- If $W=\operatorname{span}\{\mathbf{w}\}$, we will also denote W^{\perp} by \mathbf{w}^{\perp}.
- Note that the "only vector" contained in both W and W^{\perp} is $\mathbf{0}$.

