Lecture 25: Quick review from previous lecture

where $r_{k k}=\left\|\mathbf{v}_{k}\right\|=\left\langle\mathbf{a}_{k}, \mathbf{q}_{k}\right\rangle$ and $r_{i j}=\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle$. This is called the QR factorization.

- The orthogonal projection of \mathbf{v} onto the subspace W of V is the element $\mathbf{w} \in W$ such that the difference $\mathbf{z}=\mathbf{v}-\mathbf{w}$ orthogonal to W.
Moreover, let $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ is an orthogonal basis of W. Then

$$
\mathbf{w}=\frac{\left\langle\mathbf{v}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\cdots+\frac{\left\langle\mathbf{v}, \mathbf{v}_{n}\right\rangle}{\left\|\mathbf{v}_{n}\right\|^{2}} \mathbf{v}_{n} .
$$

涚

z is orthogonal to W.
w : orthogonal projection of v onto space W

Today we will discuss

- Sec. 4.4 Orthogonal Projections
- Lecture will be recorded -
- HW8 due today at 6pm.

Definition: If W is a subspace of an inner product space V, its orthogonal complement W^{\perp} (pronounced " W perp") is the set of all vectors orthogonal to W, that is,

$$
W^{\perp}=\{\mathbf{v} \in V:\langle\mathbf{v}, \mathbf{w}\rangle=0 \text { for all } \mathbf{w} \in W\} .
$$

- W^{\perp} is also a subspace of V.
- If $W=\operatorname{span}\{\mathbf{w}\}$, we will also denote W^{\perp} by \mathbf{w}^{\perp}.
- Note that the "only vector" contained in both W and W^{\perp} is $\mathbf{0}$.

$$
W \cap W^{\perp}=\{0\}
$$

Example 2. Let $\mathbf{w}_{1}=(1,2,1)^{T}$ and $\mathbf{w}_{2}=(0,-1,1)^{T}$.
(1) Suppose $W_{\overline{\bar{a}}} \operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ in \mathbb{R}^{3} under the usual dot product. Find W^{\perp}.

For $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ in w^{\perp},

$$
\begin{aligned}
& \left\langle w_{1}, \vec{x}\right\rangle=0 \\
& \left\langle w_{2}, \vec{x}\right\rangle=0
\end{aligned} \Rightarrow\left\{\begin{array} { l }
{ (\begin{array} { l }
{ 1 } \\
{ 2 } \\
{ 1 }
\end{array}) \cdot (\begin{array} { l }
{ a } \\
{ b } \\
{ c }
\end{array}) = 0 } \\
{ (\begin{array} { l }
{ 0 } \\
{ - 1 } \\
{ 1 }
\end{array}) \cdot (\begin{array} { l }
{ a } \\
{ b } \\
{ c }
\end{array}) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a+2 b+c=0 \\
-b+c=0
\end{array}\right.\right.
$$

humugenems l.ayrtem,

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 1
\end{array}\right]\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{0}{0} \Rightarrow\left\{\begin{array}{l}
b=c \\
a=-2 b-c=-3 c .
\end{array} \quad W^{+}=\left\{\left.\left(\begin{array}{c}
-3 c \\
c \\
c
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\}\right.
$$

(2) Suppose $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ in \mathbb{R}^{3} under the inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} D \mathbf{y}$, where $D=\operatorname{diag}(1,2,2)$. Find W^{\perp}.

$$
\begin{aligned}
& \text { For } \vec{x}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \vec{W}^{\perp} \text {. } \\
& \begin{array}{l}
\left\langle w_{1}, \vec{x}\right\rangle=0 \\
\left\langle w_{2}, \vec{x}\right\rangle=0
\end{array} \Rightarrow\left\{\begin{array}{lll}
(1 & 2 & 1
\end{array}\right)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & j \\
0 & 0 & 2
\end{array}\right]\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 . \\
& {\left[\begin{array}{ccc}
1 & 4 & 2 \\
0 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
b=c \\
a=-4 b-2 c=-6 c .
\end{array}\right.} \\
& \boldsymbol{N}^{\perp}=\left\{\left.\left(\begin{array}{c}
-6 c \\
2 \\
c
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\} . \quad \text { Spring } 2021
\end{aligned}
$$

Fact 4: If W is a subspace of an inner product space V with $\operatorname{dim} W=n$ and $\operatorname{dim} V=m$, then every vector $\mathbf{v} \in V$ can be uniquely decomposed into

$$
\mathbf{v}=\mathbf{w}+\mathbf{z}, \quad \text { where } \mathbf{w} \in W \text { and } \mathbf{z} \in W^{\perp}
$$

Moreover, we have

$$
\operatorname{dim} W^{\perp}=m-n
$$

and thus,

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}
$$

Example 3. Let $W=\operatorname{img} A$, where $A=\left(\begin{array}{l}\boldsymbol{v}_{1} \\ 0 \\ 1\end{array}\right)\left(\begin{array}{ll}\boldsymbol{v}_{\mathbf{2}} \\ 1 & 3 \\ 1 & 1 \\ 1 & 2\end{array}\right)$.
(1) Find W^{\perp}, that is, $(\operatorname{img} A)^{\perp}$ with respect th ed product.
(1) Find ' $W=\operatorname{ing} A$:

$$
A \xrightarrow{(3)-(1)}\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & -1 & -1
\end{array}\right) \xrightarrow{(3)+(2)}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

Then a basis for ing A is $\left\{v_{1}, v_{2}\right\}$.

$$
W=\operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

(2) Find $W^{\perp}: \vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in Z J^{1}$

$$
\begin{array}{rlr}
\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{0}{0} . & =\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)\right. \\
\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right) . & \Rightarrow \begin{array}{l}
a=-c \\
b=c
\end{array}
\end{array} \quad W^{-1}=\left\{\left.\left(\begin{array}{c}
-c \\
c \\
c
\end{array}\right) \right\rvert\, c \propto \mathbb{R}\right\} .
$$

$$
\stackrel{\text { MATH 4242-Week 9-3 }}{\text { NOTE }}=\operatorname{dim} W+\operatorname{dim} W^{\perp}=2+1=3\left(=\operatorname{dim} \mathbb{R}^{3}\right)^{\text {Spring } 20}
$$

(2) For $\mathbf{v}=(1,2,3)^{T}$. Decompose \mathbf{v} into $\mathbf{v}=\mathbf{w}+\mathbf{z}$, where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$ with respect to the dot product.
Find z (orthogonal projection of v onto W^{\perp})

$$
\begin{aligned}
& z=\frac{\left\langle v,\binom{-1}{1}\right\rangle}{\left\langle\binom{-1}{1},\binom{-1}{1}\right\rangle}\left(\begin{array}{l}
-1 \\
1 \\
1
\end{array}\right)=\frac{4}{3}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) . \\
& w=v-z=\left(\begin{array}{c}
7 \\
2 \\
5
\end{array}\right) / 3 .
\end{aligned}
$$

* We done do orthogonal projection of v onto W here since $\left\{v_{1}, v_{2}\right\}$ i $w \sqrt{2}$ orthogonal $v e \tau$
Fact 5: If W is a subspace of an inner product space V with $\operatorname{dim} W=n<\infty$, then

$$
\left(W^{\perp}\right)^{\perp}=W
$$

Example 4. Let $V=\mathcal{P}^{(4)}([-1,1])$ with L^{2} inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.
Let $W=\mathcal{P}^{(1)}=\{a x+b\}$ has a basin $\{1, x\} \cdot\left(\operatorname{dim} \frac{-1}{\sim} J=2\right)$
(1) Find W^{\perp}. For $p=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ in W^{+},

$$
\begin{aligned}
0=\langle p, 1\rangle & =\int_{-1}^{1} a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} d x \\
& =\frac{a_{4}}{5} x^{5}+\frac{a_{3}}{4} x^{4}+\frac{a_{2}}{3} x^{3}+\frac{1}{2} q / x^{2}+\left.a_{0} x\right|_{-1} ^{1} \\
& \Rightarrow \frac{2}{5} a_{4}+2 \frac{a_{2}}{3}+2 a_{0}=0 \\
0=\langle p, x\rangle & =\int_{-1}^{1}\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right) x d x \\
& =\int_{-1}^{1} a_{4} x^{5}+a_{3} x^{4}+a_{2} x^{3}+a_{1} x^{2}+a_{3} x d x \\
& =\frac{a_{4} / x^{6}+\frac{1}{5} a_{3} x^{5}+\frac{a_{2}}{4} x^{4}+\frac{a_{1}}{3} x^{3}+\left.\right|_{\text {Spring 2021 }} ^{1}}{}
\end{aligned}
$$

(2) Find dimension of W^{-1}. and lit's basis.) \rightarrow Exercise.
(1) $\left\{\begin{array}{c}15 a_{0}+5 a_{2}+3 a_{4}=0 \\ 5 a_{1}+3 a_{3}\end{array}\right.$

$$
\left[\begin{array}{ccccc}
15 & 0 & 5 & 0 & 3 \\
0 & 5 & 0 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Fact 6: Let A be any real $m \times n$ matrix. Then

$$
\operatorname{ker} A=(\operatorname{coimg} A)^{\perp} \quad\left(\text { and } \operatorname{coimg} A=(\operatorname{ker} A)^{\perp}\right) .
$$

[To see this:]
To be continued!

Poll Question 1: Which vector is the orthogonal projection of \mathbf{v} onto the space W ?
(4) w
$B) \mathrm{z}$

