Lecture 25: Quick review from previous lecture

$$\underbrace{\left(\begin{array}{c|c|c} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{array}\right)}_{A(nonsingular)} = \underbrace{\left(\begin{array}{c|c} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{array}\right)}_{Q \text{ (orthogonal)}} \underbrace{\left(\begin{array}{c|c} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & r_{nn} \end{array}\right)}_{R}$$

where $r_{kk} = ||\mathbf{v}_k|| = \langle \mathbf{a}_k, \mathbf{q}_k \rangle$ and $r_{ij} = \langle \mathbf{a}_j, \mathbf{q}_i \rangle$. This is called the **QR factorization**.

• The **orthogonal projection** of \mathbf{v} onto the subspace W of V is the element $\mathbf{w} \in W$ such that the difference $\mathbf{z} = \mathbf{v} - \mathbf{w}$ orthogonal to W. Moreover, let $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an orthogonal basis of W. Then

$$\mathbf{w} = \frac{\langle \mathbf{v}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \cdots + \frac{\langle \mathbf{v}, \mathbf{v}_n \rangle}{\|\mathbf{v}_n\|^2} \mathbf{v}_n.$$

Today we will discuss

- Sec. 4.4 Orthogonal Projections
 - Lecture will be recorded -
- HW8 due today at 6pm.

Definition: If W is a subspace of an inner product space V, its orthogonal **complement** W^{\perp} (pronounced "W perp") is the set of all vectors orthogonal to W, that is,

$$W^{\perp} = \{ \mathbf{v} \in V : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \text{ for all } \mathbf{w} \in W \}.$$

- W^{\perp} is also a subspace of V.
- If $W = \operatorname{span}\{\mathbf{w}\}$, we will also denote W^{\perp} by \mathbf{w}^{\perp} .
- Note that the "only vector" contained in both W and W^{\perp} is $\mathbf{0}$.

W 1 W = {0}

Example 2. Let $\mathbf{w}_1 = (1, 2, 1)^T$ and $\mathbf{w}_2 = (0, -1, 1)^T$.

(1) Suppose $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2\}$ in \mathbb{R}^3 under the usual dot product. Find W^{\perp} .

$$\langle W_1, \vec{x} \rangle = 0$$

$$\langle W_2, \vec{x} \rangle = 0$$

$$\langle W_3, \vec{x} \rangle = 0$$

$$\langle W_4, \vec{x} \rangle = 0$$

$$\langle W_5, \vec{x} \rangle = 0$$

$$\langle W_5, \vec{x} \rangle = 0$$

$$\langle W_6, \vec{x} \rangle = 0$$

homogeneurs I. syste

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} a$$

(2) Suppose $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2\}$ in \mathbb{R}^3 under the inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T D \mathbf{y}$, where $D = \operatorname{diag}(1, 2, 2)$. Find W^{\perp} .

For
$$\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix} \in W^{\perp}$$

$$\langle w_1, \vec{x} \rangle = 0$$
 = $\begin{cases} (|21|) \begin{bmatrix} 0 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{cases} \begin{pmatrix} a \\ b \end{pmatrix} = 0$ = $\begin{cases} a + 4b + 2c = 0 \\ -2b + 2c = 0 \end{cases}$

$$\begin{bmatrix} 1 & 4 & 2 \\ 0 & -2 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} b = C \\ a = -4b-2C = -6C \end{bmatrix}$$

MATH 4242-Week 9-3
$$W^{\perp} = \left\{ \begin{pmatrix} -6c \\ 2c \end{pmatrix} \middle| c \in \mathbb{R} \right\}$$

Spring 2021

Fact 4: If W is a subspace of an inner product space V with dim W = n and dim V = m, then every vector $\mathbf{v} \in V$ can be **uniquely** decomposed into

$$\mathbf{v} = \mathbf{w} + \mathbf{z}$$
, where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$.

Moreover, we have

$$\dim W^{\perp} = m - n$$

and thus,

$$\dim V = \dim W + \dim W^{\perp}.$$

Example 3. Let
$$W = \operatorname{img} A$$
, where $A = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$

(1) Find W^{\perp} , that is, $(\operatorname{img} A)^{\perp}$ with respect to the dot product.

1) Find
$$W = img A$$
:

A 3-1) (1 2 3) (3+2) (1 2 3)

Then a boss for my A is { vi, v2 }.

$$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

MATH 4242-Week 9-3 NOTE: $\dim W + \dim W^{\perp 3} = 2 + 1 = 3 = 3 = 3$ (= $\dim \mathbb{R}^3$)

$$W = V - Z = \begin{pmatrix} 7 \\ 2 \\ 5 \end{pmatrix}_3 = V = Z + W$$

*We don't do orthogonal projection of V are W here since V, V_1 is a subspace of an inner product space V with $\dim W = n < \infty$,

then

$$(W^{\perp})^{\perp} = W.$$

Example 4. Let $V = \mathcal{P}^{(4)}([-1,1])$ with L^2 inner product $\langle p,q \rangle = \int_{-1}^1 p(x)q(x)dx$. Let $W = \mathcal{P}^{(1)} = \{ a \times +b \}$ has a basif (-1, 1) (dim $\mathcal{U} = (-1, 1)$)

(1) Find
$$W^{\perp}$$
. For $p = a_4 x^4 + a_3 x^3 + a_4 x^2 + a_5 x^4 + a_6 x^4$

$$0 = \langle P, 1 \rangle = \int_{-1}^{1} a_4 x^4 + a_1 x^3 + a_1 x^2 + a_1 x + a_2 dx$$

$$= \frac{a_4}{5} x^5 + \frac{a_3}{4} x^4 + \frac{a_2}{3} x^3 + \frac{1}{5} a_1 x^2 + a_2 x + a_3 dx$$

$$= \frac{2}{5} a_4 + 2 \frac{a_3}{3} + 2 a_0 = 0$$

$$0 = \langle P, \times \rangle = \int_{-1}^{1} (a_4 x^4 + a_3 x^3 + a_1 x^2 + a_1 x + a_0) \times dx$$

$$= \int_{-1}^{1} a_4 x^5 + a_3 x^4 + a_1 x^3 + a_1 x^2 + a_0 \times dx$$

$$= \frac{a_4 x^6}{5} + \frac{1}{5} a_3 x^5 + \frac{a_2 x^4}{3} + \frac{a_1 x^3 + a_1 x^3 +$$

Suppose $A = A_{m \times n}$ is any matrix with rank A = r. We've seen that

 $\dim(\operatorname{coimg} A) = r$ and $\dim(\ker A) = n - r$. $a_2, a_3, a_4 \in \mathbb{R}$

Fact 6: Let A be any real $m \times n$ matrix. Then

 $\ker A = (\operatorname{coimg} A)^{\perp} \quad (\operatorname{and coimg} A = (\ker A)^{\perp}).$

[To see this:]

To be continued!

Poll Question 1: Which vector is the **orthogonal projection of v** onto the space W?

