Lecture 26: Quick review from previous lecture

- If W is a subspace of V with $\operatorname{dim} W=n$ and $\operatorname{dim} V=m$ then every vector $\mathbf{v} \in V$ can be uniquely decomposed into

$$
\mathbf{v}=\mathbf{w}+\mathbf{z}
$$

where $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$. Moreover, $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$.

- The only vector in both W and W^{\perp} is zero element $\mathbf{0}$.
- $\operatorname{coimg} A=(\operatorname{ker} A)^{\perp}$ and $\operatorname{img} A=(\operatorname{coker} A)^{\perp}$.

$\operatorname{img} A$

ker A

Recall that: $\mathbb{R}^{n} \xrightarrow{\Delta} \mathbb{R}^{m} \quad$ "dim $(\operatorname{ling} A)=\operatorname{dim}(\cos \operatorname{mg} A)$
Suppose $A=A_{m \times n}$ is any matrix with rank $A=r$. We've seen that

$$
\operatorname{dim}(\operatorname{coimg} A)=r \quad \text { and } \quad \operatorname{dim}(\operatorname{ker} A)=n-r .
$$

cong $A=\operatorname{span}[$ rows of $A]$
Fact 6: Let A be any real $m \times n$ matrix. Then

$$
\operatorname{ker} A=(\operatorname{coimg} A)^{\perp} \quad\left(\operatorname{and} \operatorname{coimg} A=(\operatorname{ker} A)^{\perp}\right)
$$

[To see thesis $A=\left[\begin{array}{c}r_{1}^{?} \\ i_{1}^{\top} \\ r_{m}\end{array}\right]_{m \times n}, r_{i}^{\top}:$ it row $+A$.
$x \in \operatorname{ker} A$, then $\left[\begin{array}{c}r_{1}^{\top} \\ \vdots \\ r_{m}^{\top}\end{array}\right] x=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right] \Rightarrow \begin{aligned} & r_{k}^{\top} x=0,1 \leq k \leq m \text {. } \\ & r_{k}^{\prime \prime} \cdot x\end{aligned}$ Then x is orthogonal to each row ${ }^{r_{k} \cdot x} r_{i}^{\top}$.

$$
\Rightarrow \quad \operatorname{mer} A \quad \frac{\operatorname{span}\left[r_{1}^{\top}, \ldots, r_{m}^{\top}\right\}}{\operatorname{cosing} A}=\operatorname{cosing} A
$$

$$
\Rightarrow \quad \operatorname{ken} A=(\cos g A)^{\perp} .
$$

Fact $5\left(\left(W^{\perp}\right)^{\perp}=W\right)$ implies

$$
\begin{aligned}
(\operatorname{ker} A)^{\perp} & =\left((\omega \operatorname{sing} A)^{\perp}\right)^{\perp} \\
& =\operatorname{cosing} A
\end{aligned}
$$

Similarly, applying the same reasoning to A^{T}, we find that
Fact 7: Let A be any real $m \times n$ matrix. Then

$$
\operatorname{img} A=(\operatorname{coker} A)^{\perp} \quad\left(\operatorname{and} \operatorname{coker} A=(\operatorname{img} A)^{\perp}\right)
$$

Fact 8: [Fredholm alternative]
The linear system $A \mathbf{x}=\mathbf{b}$ has a solution (that is, it is compatible) $\Leftrightarrow b \perp$ cover A

Example 5. Find the compatibility condition on the linear system $A \mathbf{x}=\mathbf{b}$, where $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 3 & 2\end{array}\right) . \quad(b \perp$ cher $A)$

1. Find cher $A\left(=\operatorname{ker} A^{\top}\right)$

$$
A^{\top}=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 3 \\
1 & 1 & 2
\end{array}\right) \xrightarrow[(3)-(1)]{(2)-21}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{(3)-(2)}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Solving $A^{\top} \vec{x}=0$, Then $\vec{x}=\left(\begin{array}{c}-z \\ -z \\ z\end{array}\right), \quad z \in \mathbb{R}$.
A basis of $\omega \operatorname{ker} A=\left\{\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)\right\}$
2. Let $b=\left(b_{1}, b_{2}, b_{3}\right)^{\top}$

$$
0=\left\langle b, \quad\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)\right\rangle
$$

Then $-b_{1}-b_{2}+b_{3}=0$.
is compatibility condition. It

Remark: The "same" compatibility condition can also be obtained by using Gaussian Elimination to solve the augment system $(A \mid \mathbf{b})$.]

$$
\begin{aligned}
&(A \mid b)=\left(\begin{array}{ccc|c}
1 & 2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
1 & 3 & 2 & b_{3}
\end{array}\right) \\
& \xrightarrow{3}-(1) \\
&\left(\begin{array}{lll|l}
1 & 2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
0 & 1 & 1 & b_{3}-b_{1}
\end{array}\right) \\
& \\
& \Delta\left(\begin{array}{ccc|c}
1 & 2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
0 & 0 & 0 & b_{3}-b_{1}-b_{2}
\end{array}\right)
\end{aligned}
$$

Then $A x=b$ has solutions) if
Fact 9: If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ is a basis of coimg A, then

$$
\left\{A \mathbf{v}_{1}, \cdots, A \mathbf{v}_{r}\right\} \text { is a basis of ing } A \text {. }
$$

UTE $r=\operatorname{din}(w i m g A)=\operatorname{din}(i \operatorname{lig} A)$.
It's sufficient to check $\left\{A v_{1}, \ldots, A v_{r}\right\}$ are ℓ. indep

set $c_{1} A v_{1}+\cdots+c_{r} A v_{r}=0$. Clam: $c_{1}=\cdots=c_{r}=0$.

$$
\begin{aligned}
& 0=A\left(c_{1} v_{1}+\cdots+c_{r} v_{r}\right) \\
\Rightarrow & c_{1} v_{1}+\ldots+c_{r} v_{r} \in k_{r} A \cap \operatorname{coing} A=\{0\} \\
\Rightarrow & c_{1} v_{1}+\cdots+c_{r} v_{r}=0 \Rightarrow c_{1}=\ldots=c_{r}=0 .
\end{aligned}
$$

We also have
Fact 10: A compatible linear system $A \mathbf{x}=\mathbf{b}$ with $\mathbf{b} \in \operatorname{img} A$ has a unique solution $\mathrm{x}^{*} \in \operatorname{coimg} A$ satisfying $A \mathbf{x}^{*}=\mathbf{b}$.

The general solution is

$$
\mathrm{x}=\mathrm{x}^{*}+\mathrm{z}
$$

where $\mathbf{x}^{*} \in \operatorname{coimg} A$ and $\mathbf{z} \in \operatorname{ker} A$. Then \mathbf{x}^{*} has the smallest Euclidean norm of all the solutions to $A \mathbf{x}=\mathbf{b}$.
[To see this:]

ker A

1.

$$
\begin{aligned}
A x=A\left(x^{*}+z\right) & =A x^{*}+A z \\
& =b+0
\end{aligned}
$$

Then $A x=b$ (ie, x ia solution).
2. $\begin{aligned}\|x\|_{2}^{2}=\left\|x^{*}+z\right\|_{2}^{2} & =\left\|x^{*}\right\|_{2}^{2}+2\langle x y, z\rangle+\|z\|_{2}^{2} \\ & \geq\left\|x^{*}\right\|_{2}^{2}\end{aligned}$ Then $\|x\|_{2} \geq\left\|x^{*}\right\|$, which means x^{*} has smallere zudidean norm.

To find the solution of minimum Euclidean norm, that is, x^{*} :
(1) Using Gaussian Elimination to find the general solution \mathbf{x} to the system $A \mathrm{x}=\mathrm{b}$.
(2) Finding the basis v_{1}, \cdots, v_{ℓ} for $\operatorname{ker} A$, and then using the conditions $v_{j}^{T} \mathbf{x}=0$.

Example 6. Find the solution of minimum Euclidean norm \mathbf{x}^{*} of the linear system $A \mathbf{x}=\mathbf{b}$, where $A=\left(\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 2 & 2\end{array}\right)$ and $\mathbf{b}=(1,0,0)^{T} . \quad\left(x^{*} \perp \operatorname{ker} A\right)$.

1. Find general solutions.

$$
(A \mid b)=\left(\begin{array}{ccc|c}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 2 & 2 & 0
\end{array}\right) \xrightarrow{3}-22\left(\begin{array}{ccc|c}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$y=-z$
$x=1+2 z$$\quad$ General sulutous are $\left(\begin{array}{c}1+2 z \\ -z \\ z\end{array}\right)|z \in R|$
2. Find a basis for tor $A=\left\{\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right\}$.
3. $0=\left\langle\left(\begin{array}{c}1+2 z \\ -z \\ z\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right\rangle$

$$
0=2(1+2 z)+z+z=6 z+2
$$

$z=-1 / 3$. plug g it in general sol.
to jet $x^{*}=\left(\begin{array}{c}1+2\left(-\frac{1}{3}\right) \\ 1 / 3 \\ -1 / 3\end{array}\right)=\left(\begin{array}{c}1 / 3 \\ 1 / 3 \\ -1 / 3\end{array}\right) \cdot \nexists$

Chapter 7 Linearity

7.1 Linear Functions

Definition: [Linear operators]

If $L: V \rightarrow W$ is a mapping between vector spaces V and W, we say that L is linear if for all vectors \mathbf{x} and \mathbf{y} in V, and scalars c such that

$$
\begin{aligned}
L[c \mathbf{x}] & =c L[\mathbf{x}] \\
L[\mathbf{x}+\mathbf{y}] & =L[\mathbf{x}]+L[\mathbf{y}] .
\end{aligned}
$$

We call such a mapping L a linear operator. We call V the domain for L, and W the codomain.

We may also say L is a linear function, or a linear map (or mapping), or a linear transformation. They all refer to the same properties.

Properties:

- For any scalars c and d and any vectors \mathbf{x} and \mathbf{y} in V,

$$
L[c \mathbf{x}+d \mathbf{y}]=c L[\mathbf{x}]+d L[\mathbf{y}]
$$

- For any scalars c_{1}, \cdots, c_{n} and any vectors $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ in V, then

$$
L\left[c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right]=c_{1} L\left[\mathbf{x}_{1}\right]+\cdots+c_{n} L\left[\mathbf{x}_{n}\right] .
$$

- $L[\mathbf{0}]=\mathbf{0}$ (the $\mathbf{0}$ on the left is the zero element in V; the $\mathbf{0}$ on the right is the zero element in W).

Poll Question 1: Let A be a $m \times n$ matrix. Then coker A is orthogonal to $\operatorname{img} A$.
b) Yes
B) No

