
Lecture 26: Quick review from previous lecture

• If W is a subspace of V with dimW = n and dimV = m, then every vector

v 2 V can be uniquely decomposed into

v = w + z

where w 2 W and z 2 W?
. Moreover, dimV =dimW + dimW?

.

• The only vector in both W and W?
is zero element 0.

• coimgA = (kerA)? and imgA = (cokerA)?.

—————————————————————————————————

Today we will discuss

• Section 4.4 Orthogonal Projections

• Section 7.1 Linear Functions

- Lecture will be recorded -

—————————————————————————————————

• Exam 2 (next Wednesday 3/31) will cover 2.5, 3.1-3.5, and 4.1-4.4.

Instruction and practice exam have been announced on Canvas.
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Recall that:

Suppose A = Am⇥n is any matrix with rankA = r. We’ve seen that

dim(coimgA) = r and dim(kerA) = n� r.

Fact 6: Let A be any real m⇥ n matrix. Then

kerA = (coimgA)? (and coimgA = (kerA)?).

[To see this:]

Similarly, applying the same reasoning to AT
, we find that

Fact 7: Let A be any real m⇥ n matrix. Then

imgA = (cokerA)? (and cokerA = (imgA)?).
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Fact 8: [Fredholm alternative]
The linear systemAx = b has a solution (that is, it is compatible), b ? cokerA

Example 5. Find the compatibility condition on the linear system Ax = b,

where A =

0

@
1 2 1

0 1 1

1 3 2

1

A .
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Remark: The “same” compatibility condition can also be obtained by using

Gaussian Elimination to solve the augment system (A|b).]

Fact 9: If {v1, · · · ,vr} is a basis of coimgA, then

{Av1, · · · , Avr} is a basis of imgA.
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We also have

Fact 10: A compatible linear system Ax = b with b 2 imgA has a unique

solution x⇤ 2 coimgA satisfying Ax⇤
= b.

The general solution is

x = x⇤
+ z

where x⇤ 2 coimgA and z 2 kerA. Then x⇤
has the smallest Euclidean

norm of all the solutions to Ax = b.

[To see this:]
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To find the solution of minimum Euclidean norm, that is, x⇤:

(1) Using Gaussian Elimination to find the general solution x to the system

Ax = b.

(2) Finding the basis v1, · · · , v` for kerA, and then using the conditions vTj x = 0.

Example 6. Find the solution of minimum Euclidean norm x⇤
of the linear system

Ax = b, where A =

0

@
1 0 �2

0 1 1

0 2 2

1

Aand b = (1, 0, 0)T .

MATH 4242-Week 10-1 6 Spring 2021

( xx t KerA )
.

I
.
Find general solutions

(A1 b) =L ! l !) '

f l ! )
&

-

Izz
.

General solutions are HIE) tear!
2

. Find a basis tu ka A .

' l ( T ) )
.

3. of ( '
''

¥)
,
fit )

O = 2 ( It 27 ) t Z t Z = 6 -2+2
.

z = - 43
.

-
plug it in general so I.

to go. *
= (
"

I
,

"'

) -- f %) . #



Chapter 7 Linearity

7.1 Linear Functions

Definition: [Linear operators]
If L : V ! W is a mapping between vector spaces V and W , we say that L is

linear if for all vectors x and y in V , and scalars c such that

L[cx] = cL[x]

L[x + y] = L[x] + L[y].

We call such a mapping L a linear operator. We call V the domain for L,
and W the codomain.

We may also say L is a linear function, or a linear map (or mapping), or a

linear transformation. They all refer to the same properties.

Properties:

• For any scalars c and d and any vectors x and y in V ,

L[cx + dy] = cL[x] + dL[y]

• For any scalars c1, · · · , cn and any vectors x1, · · · ,xn in V , then

L[c1x1 + · · · + cnxn] = c1L[x1] + · · · + cnL[xn].

• L[0] = 0 (the 0 on the left is the zero element in V ; the 0 on the right is the

zero element in W ).
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Poll Question 1: Let A be a m⇥ n matrix. Then cokerA is orthogonal to

imgA.

A) Yes
B) No
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