Lecture 26: Quick review from previous lecture

• If W is a subspace of V with $\dim W = n$ and $\dim V = m$ then every vector $\mathbf{v} \in V$ can be **uniquely** decomposed into

Today we will discuss

- Section 4.4 Orthogonal Projections
- Section 7.1 Linear Functions

- Lecture will be recorded -

• Exam 2 (next Wednesday 3/31) will cover 2.5, 3.1-3.5, and 4.1-4.4. Instruction and practice exam have been announced on Canvas.

Recall that:
$$\mathbb{R}^{n} \xrightarrow{A} \mathbb{R}^{m}$$
 $\lim_{X \to \infty} (\lim_{X \to \infty} A) = dm (\log_{A} A)$
Suppose $A = A_{m \times n}$ is any matrix with rank $A = r$. We've seen that
 $\dim(\operatorname{coing} A) = r$ and $\dim(\ker A) = n - r$.
 $\lim_{X \to \infty} A = \operatorname{span} [\operatorname{rows} \operatorname{of} A]$
Fact 6: Let A be any real $m \times n$ matrix. Then
 $\ker A = (\operatorname{coing} A)^{\perp}$ (and $\operatorname{coing} A = (\ker A)^{\perp}$).
[To see this:] $A = \begin{bmatrix} y_{1}^{T} \\ y_{1}^{T} \end{bmatrix}_{m \times n}$
 $X \in \ker A$, then $\begin{bmatrix} y_{1}^{T} \\ y_{1}^{T} \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow Y_{1}^{T} X = 0$, $1 \le \kappa \le n$.
Then X is or the gonal so each row r_{1}^{T} .
 $\Rightarrow X$ $(\operatorname{res} A)^{\perp} = (\operatorname{coing} A)^{\perp}$ $\operatorname{coing} A$
 $\Rightarrow \ker A$ $(\operatorname{res} A)^{\perp} = \operatorname{coing} A$
 $fact S ((W^{\perp})^{\perp} = Tv) \mod_{V} x$ is $(\operatorname{res} A)^{\perp}$.
Similarly, applying the same reasoning to A^{T} , we find that

Fact 7: Let A be any real $m \times n$ matrix. Then $\operatorname{img} A = (\operatorname{coker} A)^{\perp} \quad (\operatorname{and} \operatorname{coker} A = (\operatorname{img} A)^{\perp}).$

Fact 8: [Fredholm alternative]

The linear system $A\mathbf{x} = \mathbf{b}$ has a solution (that is, it is compatible) $\Leftrightarrow b \perp \operatorname{coker} A$

Remark: The "same" compatibility condition can also be obtained by using Gaussian Elimination to solve the augment system $(A|\mathbf{b})$.]

I

We also have

Fact 10: A compatible linear system $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} \in \operatorname{img} A$ has a unique solution $\mathbf{x}^* \in \operatorname{coimg} A$ satisfying $A\mathbf{x}^* = \mathbf{b}$. The general solution is

 $\mathbf{x} = \mathbf{x}^* + \mathbf{z}$

where $\mathbf{x}^* \in \operatorname{coimg} A$ and $\mathbf{z} \in \ker A$. Then \mathbf{x}^* has the **smallest Euclidean** norm of all the solutions to $A\mathbf{x} = \mathbf{b}$.

[To see this:]

 $\ker A$

1. $A \times = A(x^{*} + z) = Ax^{*} + Az$ = b + 0Then $A \times = b(iz, x i) = solution)$ 2. $\|| \times \||_{2}^{2} = \|| \times^{*} + z \||_{2}^{2} = \||x^{*}\||_{2}^{2} + 2\langle x^{*}, z \rangle + \|z\||_{2}^{2}$ $\geq \||x^{*}\||_{2}^{2}$

Then || × || 2 || ×* ||, which means ×* has smaller Endidean norm. To find the solution of minimum Euclidean norm, that is, x^{*}:

- (1) Using **Gaussian Elimination** to find the general solution \mathbf{x} to the system $A\mathbf{x} = \mathbf{b}$.
- (2) Finding the basis v_1, \dots, v_ℓ for ker A, and then using the conditions $v_j^T \mathbf{x} = 0$.

Example 6. Find the solution of minimum Euclidean norm
$$\mathbf{x}^{*}$$
 of the linear system
 $A\mathbf{x} = \mathbf{b}$, where $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$ and $\mathbf{b} = (1, 0, 0)^{T}$. ($\mathbf{x}^{*} \perp | \ker A \rangle$).
 $A\mathbf{x} = \mathbf{b}$, where $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$ and $\mathbf{b} = (1, 0, 0)^{T}$. ($\mathbf{x}^{*} \perp | \ker A \rangle$).
 $A\mathbf{x} = \mathbf{b}$ as solutions:
 $(A \mid b) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$
 $\mathbf{y} = -\mathbf{z}$.
 $\mathbf{x} = \mathbf{b}^{*} \mathbf{z}^{*}$. General solutions are $\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & -2 \end{pmatrix} | \mathbf{z} \mathbf{d} \mathbf{r}$.
 $\mathbf{z} = \mathbf{b}^{*} \mathbf{z}^{*}$.
 $\mathbf{z} = \mathbf{c}^{*} \mathbf{z}^{*}$.
 $\mathbf{z} = -\frac{1}{3}$. plug it in general sol.
 $\mathbf{z} = -\frac{1}{3}$. plug it in general sol.
 $\mathbf{z} = -\frac{1}{3}$.
 \mathbf

Chapter 7 Linearity

7.1 Linear Functions

Definition: [Linear operators]

If $L: V \to W$ is a mapping between vector spaces V and W, we say that L is **linear** if for all vectors **x** and **y** in V, and scalars c such that

 $L[c\mathbf{x}] = cL[\mathbf{x}]$ $L[\mathbf{x} + \mathbf{y}] = L[\mathbf{x}] + L[\mathbf{y}].$

We call such a mapping L a **linear operator**. We call V the **domain** for L, and W the **codomain**.

We may also say L is a *linear function*, or a *linear map* (or mapping), or a *linear transformation*. They all refer to the same properties.

Properties:

• For any scalars c and d and any vectors \mathbf{x} and \mathbf{y} in V,

$$L[c\mathbf{x} + d\mathbf{y}] = cL[\mathbf{x}] + dL[\mathbf{y}]$$

• For any scalars c_1, \dots, c_n and any vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ in V, then

$$L[c_1\mathbf{x}_1 + \dots + c_n\mathbf{x}_n] = c_1L[\mathbf{x}_1] + \dots + c_nL[\mathbf{x}_n].$$

• $L[\mathbf{0}] = \mathbf{0}$ (the **0** on the left is the zero element in V; the **0** on the right is the zero element in W).

Poll Question 1:	Let A be a $m \times n$ matrix.	Then $\operatorname{coker} A$ is orthogonal to
$\operatorname{img} A.$		

H) YesB) No