Lecture 26: Quick review from previous lecture

e If W is a subspace of V' with dimW :@and dimV :@ then every vector
v € V can be uniquely decomposed into

V=w-+z m-n

%

where w € W and z € W+. Moreover, dimV=dimW + dimW+.
e The only vector in both W and W+ is zero element 0.

e coimg A = (ker A)* and img A = (coker A)*.

A
— T

coimg A

img A coker A
ker A

Today we will discuss
e Section 4.4 Orthogonal Projections

e Section 7.1 Linear Functions

- Lecture will be recorded -

e Exam 2 (next Wednesday 3/31) will cover 2.5, 3.1-3.5, and 4.1-4.4.
Instruction and practice exam have been announced on Canvas.
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Suppose A = A,,x, is any matrix with rankA = r. We've seen that

dim(coimg A) = r and _dim kerA -
comef A =$P4nfn?ws }

Fact 6: Let A be any real m x n matrix. Then

ker A = (coimg A)*  (andecoimg A = (kerA)*).
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Similarly, applying the same reasoning to A’ we find that

Fact 7: Let A be any real m x n matrix. Then

img A = (coker A)* (and coker A = (img A)*).
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Fact 8: [Fredholm alternative]
The linear system Ax = b has a solution (that is, it is compatible) <bulmcoker
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Example 5. Find the compatibility_condition on the linear system Ax = b
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Remark: The “same” compatibility condition can also be obtained by using
Gaussian Elimination to solve the augment system (A|b).]
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Fact 9: If {vy,---,v,} is a basis of coimg A, then

{Avy, -+ Av,} is a basis of img A.
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We also have

'Fact 10: A compatible linear system Ax = b with b € img A has a unique\
Solutior@e coimg A satisfying Ax* = b.
The general solution is

XxX=X"+17

where x* € coimg A and z € ker A. Then x* has the smallest Euclidean
' norm of all the solutions to Ax = b.

[To see this:]
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To find the solution of minimum Euclidean norm, that is, x*:

(1) Using Gaussian Elimination to find the general solution x to the system
Ax =b.

(2) Finding the basis vy, - - - , vy for ker A, and then using the conditions v

jX:O.

Example 6. Find the solution of minimum Euclidean norm x* of the linear system

10 —2
Ax=b,where A= 01 1 |andb=(1,0,00". ( x* & kev A )_
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Chapter 7 Linearity

7.1 Linear Functions

'Definition: [Linear operators]
If L:V — W is a mapping between vector spaces V and W, we say that L is
linear if for all vectors x and y in V', and scalars ¢ such that
Llex| = cL[x]
Lix+y] = L[x| + Lly].

We call such a mapping L a linear operator. We call V' the domain for L,

\and W the codomain.

We may also say L is a linear function, or a linear map (or mapping), or a
linear transformation. They all refer to the same properties.

Properties:

e For any scalars ¢ and d and any vectors x and y in V,
Lex + dy] = cL|x| + dLl[y]
e For any scalars ¢y, - - - , ¢, and any vectors x1,--- ,X, in V', then
Lieixy + - -+ ¢px,) = el LX) + - - + ¢, L[x,).

e L[0] = 0 (the O on the left is the zero element in V; the 0 on the right is the
zero element in W).
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Poll Question 1: Let A be a m x n matrix. Then coker A is orthogonal to
img A.

Aﬁ/Yes
B) No
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