Lecture 27: Quick review from previous lecture

- A compatible linear system $A \mathbf{x}=\mathbf{b}$ with $b \in \operatorname{img} A$ has a unique solution $\mathbf{x}^{*} \in \operatorname{coimg} A$ satisfying $A \mathbf{x}^{*}=\mathbf{b}$.
The general solution is $\mathbf{x}=\mathbf{x}^{*}+\mathbf{z}$, where $\mathbf{x}^{*} \in \operatorname{coimg} A$ and $\mathbf{z} \in \operatorname{ker} A$. Then \mathbf{x}^{*} has the smallest Euclidean norm of all the solutions to $A \mathbf{x}=\mathbf{b}$.

Today we will discuss

- Section 7.1 Linear Functions

- Lecture will be recorded -

- Exam 2 (next Wednesday 3/31) will cover 2.5, 3.1-3.5, and 4.1-4.4. Instruction and practice exam have been announced on Canvas.

Fact 9: If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ is a basis of coimg A, then

$$
\left\{A \mathbf{v}_{1}, \cdots, A \mathbf{v}_{r}\right\} \text { is a basis of img } A \text {. }
$$

[Proof] Note that $r=\operatorname{dim}(\operatorname{coimg} A)=\operatorname{dim}(\operatorname{img} A)$. It's sufficient to check $\left\{A \mathbf{v}_{1}, \cdots, A \mathbf{v}_{r}\right\}$ is linearly independent. Set up $c_{1} A \mathbf{v}_{1}+\cdots+c_{r} A \mathbf{v}_{r}=\mathbf{0}$. Claim that $c_{1}=\cdots=c_{r}=0$. Now we have $A\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)=\mathbf{0}$, and thus

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r} \in \operatorname{ker} A \cap\left(\omega_{\operatorname{ing}} \boldsymbol{A}\right)
$$

In addition, $c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}$ is also in coimg A. Since coimg $A \cap \operatorname{ker} A=\{\mathbf{0}\}$, it forces that $c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}=\mathbf{0}$, which implies $c_{1}=\cdots=c_{r}=0$ due to independence of \mathbf{v}_{i}.

Chapter 7 Linearity

7.1 Linear Functions

Definition: "Linear operators]

If $L: V \rightarrow W$ is a mapping between vector spaces V and W, we say that L is linear if for all vectors \mathbf{x} and \mathbf{y} in V, and scalars c such that

$$
\left\{\begin{aligned}
L[\mathbf{c} \mathbf{x}] & =c L[\mathbf{x}] \\
L[\mathbf{x}+\mathbf{y}] & =L[\mathbf{x}]+L[\mathbf{y}] .
\end{aligned}\right.
$$

We call such a mapping L a linear operator. We call V the domain for L, and W the codomain.

We may also say L is a linear function, or a linear map (or mapping), or a linear transformation. They all refer to the same properties.

Properties:

- For any scalars c and d and any vectors \mathbf{x} and \mathbf{y} in V,

$L[c \mathbf{x}+d \mathbf{y}]=c L[\mathbf{x}]+d L[\mathbf{y}]$

- For any scalars c_{1}, \cdots, c_{n} and any vectors $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ in V, then

$$
L\left[c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right]=c_{1} L\left[\mathbf{x}_{1}\right]+\cdots+c_{n} L\left[\mathbf{x}_{n}\right] .
$$

- $L[\mathbf{0}]=\mathbf{0}$ (the $\mathbf{0}$ on the left is the zero element in V; the $\mathbf{0}$ on the right is the zero element in W).

Example 1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
\begin{array}{rl|l}
\rightarrow \mathbb{R}^{2} \text { be defined by } & T[c \vec{x}+d \vec{y}] \\
T(x, y) & =(x+2 y,(2) x-y) . & =A[c \vec{x}+d \vec{y}] \\
& =\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] & =c A \vec{x}+d A \vec{y} \\
& =A & =c T\left[\begin{array}{l}
x \\
y
\end{array}\right] .
\end{array}
$$

Then T is a linear mapping.

Q: What are the linear operators $L: \mathbb{R} \rightarrow \mathbb{R}$?
T is linear map.

Fact 1: Suppose L is any linear operator $L: \mathbb{R} \rightarrow \mathbb{R}$. Then

$$
L[\mathbf{x}]=a \mathbf{x} \quad \text { for a fixed scalar } a \text {. }
$$

Thus all linear functions from $\mathbb{R} \rightarrow \mathbb{R}$ are lines passing through the origins.
[To see this] Observe $L[x]=L\left[\begin{array}{ll}1 & x\end{array}\right] \underset{x \in \mathbb{R} \text { so we can }}{ }$

$$
=x L[1] . \quad \text { view } x \text { as scalar. }
$$

Let $a=L[1]$. Then

$$
L[x]=a x .
$$

Warning : The function $f(x)=a x+b$ is not a linear function unless $b=0$, even though its graph is also a line; this is because $f(0)=b$, so it doesn't pass through the origin (unless $b=0$)

$$
\mathbb{R}^{n} \xrightarrow{A} \mathbb{R}^{m}
$$

Q: What are the linear operators $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$?
Example 2. We can think of $A(m \times n$ matrix $)$ as defining a mapping L from \mathbb{R}^{n} to \mathbb{R}^{m}, defined by

$$
L[\mathbf{v}]=A \mathbf{v} \quad v \in \mathbb{R}^{n}
$$

The mapping L is linear (that is, a linear mapping from \mathbb{R}^{n} to \mathbb{R}^{m}).
If $\quad\left(\begin{array}{c}\text {, } \\ 4242-\text { Seek } 10-2\end{array}\right.$

Q: Are there any other linear mappings from \mathbb{R}^{n} to \mathbb{R}^{m} ? That is, can there be a linear mapping not of the above form, for some matrix A ?

Fact 2: Every linear mapping L from \mathbb{R}^{n} to \mathbb{R}^{m} is given by matrix multiplication,

$$
L[\mathbf{v}]=A \mathbf{v}, \quad \text { where } A \text { is an } m \times n \text { matrix. }
$$

[To see this:] Taking $v \in \mathbb{R}^{n}, \quad v=v_{1} e_{1}+\cdots+v_{n} e_{n}$, where $\left\{e_{0}\right\}$ is standard basis of \mathbb{R}^{4}.

$$
\begin{aligned}
& L[v]=L\left[v_{1} e_{1}+\ldots+v_{n} e_{n}\right] \\
& =v_{1} L\left[e_{1}\right]+\cdots+v_{n} L\left[e_{n}\right] \text {. } \\
& =\underbrace{\left[\begin{array}{lll}
L\left[e_{1}\right] & \cdots & L\left[e_{n}\right]
\end{array}\right]}_{A_{m \times n}}\left[\begin{array}{c}
v_{1} \\
i \\
v_{n}
\end{array}\right], \begin{array}{l}
L\left[e_{i}\right]=i^{+h} \\
\text { column of } A
\end{array} \\
& c^{2}=|f| t, f^{\prime}, f^{\prime \prime} \text { continuonl). } \\
& \rightarrow C^{\prime}=\left[f \mid f, f^{\prime} \text { continuous } \mid\right.
\end{aligned}
$$

Example 3. Let $C^{0}([a, b])$ be the vector space of continuous functions on the interval $[a, b]$. Let $C^{1}([a, b])$ be the space of continuously differentiable functions on $[a, b]$. Check the following functions are linear functions (operators):

1. Define the operator $J: C^{0}([a, b]) \rightarrow C^{\mathbf{1}}([a, b])$ by

$$
J[f](x)=\int_{a}^{x} f(t) d t, \quad \text { where } f \in C^{0}([a, b])
$$

(1) Check $J[f]$ is C^{\prime} if $t \in C^{0}$:

$$
\begin{array}{ll}
\frac{d}{d x} J[f](x)= & \frac{d}{d x} \int_{d}^{x} f(t) d t=\frac{f(x)}{} \text { by Fundamental } \\
\text { hen } \frac{d}{d x} J[f] \in C^{0}, & J[f] \in C^{\min } .
\end{array}
$$

(2)
${ }_{M A} \Psi_{H} d_{G} \mathbb{R}_{R}$

$$
\begin{aligned}
& J_{10-2}[c f+d g]={ }_{5} c \int_{a}^{x} f+d \int_{a}^{x} g d t \\
& {\operatorname{tig} c c^{\circ}}=c J[f]+d J[g] \text {. So } J_{\text {is }}
\end{aligned}
$$

2. Now define the operator $D: C^{1}([a, b]) \rightarrow C^{0}([a, b])$ by

$$
D[f](x)=\frac{d}{d x} f(x)=f^{\prime}(x), \quad \text { where } f \in C^{1}([a, b])
$$

(1) $f \in C^{\prime}, D[f]=f^{\prime}(x) \in C^{0}$.
(2) $D[c t+d g]=c f^{\prime}+d g^{\prime}$

$$
=c D[f]+d D[g]
$$

$$
\text { So } D \text { is a } l \text { op. }
$$

\S The space of linear functions $\mathcal{L}(V, W)$.

Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W.

Fact 3: $\mathcal{L}(V, W)$ is a vector space. (see Definition 2.1 in textbook for the definition of a vector space)

Combining with Fact 2, we have
Fact 4: If $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$, then the space $\mathcal{M}_{m \times n}$ of all $m \times n$ matrices is a vector space, (which is a fact we already knew.)

Example 4. The space of all linear transformations of the plane, $\mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, is indeed $\mathcal{M}_{2 \times 2}$. And its standard basis are
$\left[\left(\begin{array}{ll}\boldsymbol{a} & \boldsymbol{b}^{\prime} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right)\right)^{\prime}, E_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), E_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

§ Composition.

Fact 5: If $L: V \rightarrow W$ is a linear operator and $M: W \rightarrow Z$ is another linear operator, then we can define their composition $M \circ L: V \rightarrow Z$ by

$$
(M \circ L)[\mathbf{v}]=M[L[\mathbf{v}]] .
$$

Then $(M \circ L)$ is linear.

Example 5. If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$ and $Z=\mathbb{R}^{k}$, then

$$
\begin{aligned}
L: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m}, & & M: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k} \\
L[\mathbf{v}] & =A \mathbf{v}, & & M[\mathbf{w}]=B \mathbf{w}
\end{aligned}
$$

for some matrices $A=A_{m \times n}$ and $B=B_{k \times m}$. Consequently, the composition $M \circ L$ is given by

$$
\begin{gathered}
(M \circ L)[v]=B A[v] . \\
M[L[v]]=B[A v] .
\end{gathered}
$$

Example 6. Recall in Example 3. $\left.D: C^{2}([a, b]) \rightarrow C^{(12}(a, b]\right)$ defined by

$$
D[f](x)=f^{\prime}(x)
$$

Then $D \circ D[f]=D\left[f^{\prime}\right]=f^{\prime \prime} \in C^{0}$ if $f \in C^{2}$.

$$
V \xrightarrow{L} W \xrightarrow{M} V
$$

§ Inverses

Definition: Let $L: V \rightarrow W$ be a linear operator. If $M: W \rightarrow V$ is an operator such that left inverse of L right inverse of L $\overparen{M} \circ L=I_{V}, \quad L \circ \overparen{M}=I_{W}$
where I_{V} is the identity map on V, and I_{W} is the identity map on W. Then we call L is invertible and M is the inverse of L and write $M=L^{-1}$.

Example 7. If $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$,

$$
\begin{aligned}
L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, & M: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
L[\mathbf{v}]=A \mathbf{v}, & M[\mathbf{w}]=B \mathbf{w} \\
\text { is reduced to } & M \circ L[\mathbf{v}]=B A \mathbf{v} . \\
& \overparen{B A}=I_{n} . \\
L \circ M[\mathbf{w}]= & \mathbf{w} .
\end{aligned}
$$

Then the condition (1) is reduced to

8
Example \mathbb{Z}. Let $J[f](x)=\int_{a}^{x} f(t) d t$ be the integration operator, and $D[f](x)=f^{\prime}(x)$ be differentiation.
(1) Compute $D \circ J$.
(2) Compute $J \circ D$.
To be continued!

