Lecture 27: Quick review from previous lecture

• A compatible linear system $A\mathbf{x} = \mathbf{b}$ with $b \in \operatorname{img} A$ has a unique solution $\mathbf{x}^* \in \operatorname{coimg} A$ satisfying $A\mathbf{x}^* = \mathbf{b}$.

The general solution is $\mathbf{x} = \mathbf{x}^* + \mathbf{z}$, where $\mathbf{x}^* \in \text{coimg } A$ and $\mathbf{z} \in \ker A$. Then \mathbf{x}^* has the smallest Euclidean norm of all the solutions to $A\mathbf{x} = \mathbf{b}$.

Today we will discuss

• Section 7.1 Linear Functions

- Lecture will be recorded -

• Exam 2 (next Wednesday 3/31) will cover 2.5, 3.1-3.5, and 4.1-4.4. Instruction and practice exam have been announced on Canvas. **Fact 9:** If $\{\mathbf{v}_1, \cdots, \mathbf{v}_r\}$ is a basis of coimg A, then

 $\{A\mathbf{v}_1, \cdots, A\mathbf{v}_r\}$ is a basis of img A.

[Proof] Note that $r = \dim(\operatorname{coimg} A) = \dim(\operatorname{img} A)$. It's sufficient to check $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is linearly independent. Set up $c_1A\mathbf{v}_1 + \dots + c_rA\mathbf{v}_r = \mathbf{0}$. Claim that $c_1 = \dots = c_r = 0$. Now we have $A(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) = \mathbf{0}$, and thus

 $c_1\mathbf{v}_1 + \cdots + c_r\mathbf{v}_r \in \ker A \land (\operatorname{coing} A)$

In addition, $c_1\mathbf{v}_1 + \cdots + c_r\mathbf{v}_r$ is also in coimg A. Since coimg $A \cap \ker A = \{\mathbf{0}\}$, it forces that $c_1\mathbf{v}_1 + \cdots + c_r\mathbf{v}_r = \mathbf{0}$, which implies $c_1 = \cdots = c_r = 0$ due to independence of \mathbf{v}_i .

Chapter 7 Linearity

7.1 Linear Functions

Definition: [Linear operators]

If $L: V \to W$ is a mapping between vector spaces V and W, we say that L is **linear** if for all vectors **x** and **y** in V, and scalars c such that

We call such a mapping L a **linear operator**. We call V the **domain** for L, and W the **codomain**.

We may also say L is a *linear function*, or a *linear map* (or mapping), or a *linear transformation*. They all refer to the same properties.

Properties:

• For any scalars c and d and any vectors \mathbf{x} and \mathbf{y} in V,

 $L[c\mathbf{x} + d\mathbf{y}] = cL[\mathbf{x}] + dL[\mathbf{y}]$

• For any scalars c_1, \dots, c_n and any vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ in V, then

$$L[c_1\mathbf{x}_1 + \dots + c_n\mathbf{x}_n] = c_1L[\mathbf{x}_1] + \dots + c_nL[\mathbf{x}_n].$$

• $L[\mathbf{0}] = \mathbf{0}$ (the **0** on the left is the zero element in V; the **0** on the right is the zero element in W).

Warning: The function f(x) = ax + b is not a linear function unless b = 0, even though its graph is also a line; this is because f(0) = b, so it doesn't pass through the origin (unless b = 0)

Q: What are the linear operators $L : \mathbb{R}^n \to \mathbb{R}^m$?

Example 2. We can think of A ($m \times n$ matrix) as defining a mapping L from \mathbb{R}^n to \mathbb{R}^m , defined by

$$L[\mathbf{v}] = A\mathbf{v} \quad v \in \mathbb{R}^n.$$

The mapping L is linear (that is, a linear mapping from \mathbb{R}^n to \mathbb{R}^m). MATH 4242-Week 10-2, Check $L[cv_{\ddagger}dw] = c L[v] + d L[w_{pring 2021}]$

Q: Are there any other linear mappings from \mathbb{R}^n to \mathbb{R}^m ?

That is, can there be a linear mapping not of the above form, for some matrix A?

Fact 2: Every linear mapping
$$L$$
 from \mathbb{R}^n to \mathbb{R}^m is given by matrix multiplication,
 $L[\mathbf{v}] = A\mathbf{v}$, where A is an $m \times n$ matrix.
[To see this:] Taking $\mathbf{v} \in i \widehat{\mathbb{R}}^n$, $\mathbf{v} = \mathbf{v}_i e_i + \dots + \mathbf{v}_n e_n$, where $\{e_i\}$
is standard basis of $i \widehat{\mathbb{R}}^n$.
 $L[\mathbf{v}] = L[\mathbf{v}_i e_1 + \dots + \mathbf{v}_n e_n]$
 $= \mathbf{v}_i L[e_i] + \dots + \mathbf{v}_n L[e_n]$.
 $= \begin{bmatrix} L[e_i] \cdots L[e_n] \end{bmatrix} \begin{bmatrix} \mathbf{v}_i \\ \mathbf{v}_n \end{bmatrix}$, $L[e_i] = i^{th}$
 $A_{m \times n}$

Example 3. Let $C^0([a,b])$ be the vector space of continuous functions on the interval [a,b]. Let $C^1([a,b])$ be the space of continuously differentiable functions on [a,b]. Check the following functions are linear functions (operators):

 $C^2 = \{f \mid f, f', f'' \text{ continuoull} \}$

1. Define the operator $J: C^0([a, b]) \rightarrow C^1([a, b])$ by

$$J[f](x) = \int_{a}^{x} f(t)dt, \quad \text{where } f \in C^{0}([a, b]).$$

$$(1) \quad \text{Chack} \quad J[f] \quad \text{is } C' \quad \text{if } f \in C^{\circ}.:$$

$$\frac{d}{dx} \quad J[f](x) = \quad \frac{d}{dx} \int_{a}^{\infty} f(t)dt = f(x) \quad b_{x} \quad \text{Fundamental} \\ \text{Then } \frac{d}{dx} J[f](x) = \quad \frac{d}{dx} \int_{a}^{\infty} f(t)dt = f(x) \quad b_{x} \quad \text{Fundamental} \\ \text{Then } \frac{d}{dx} J[f] \in C^{\circ}, \quad J[f] \quad \in C^{\circ}.$$

$$(2) \quad \text{Then } \frac{d}{dx} J[f] \in C^{\circ}, \quad J[f] \quad \in C^{\circ}.$$

$$(3) \quad \text{MASSURGENTION } J[f] \quad C \quad f + dg] = \int_{a}^{b} c \int_{a}^{\infty} f + d \int_{a}^{\infty} g \, dt \quad \text{Spring 2021} \\ f \cdot g \cdot c^{\circ} \quad c \quad J[f] \quad + d \quad J[g]. \quad \text{So } J_{is}$$

2. Now define the operator $D: C^1([a, b]) \to C^0([a, b])$ by

 $D[f](x) = \frac{d}{dx}f(x) = f'(x), \quad \text{where } f \in C^{1}([a, b]).$ $\bigcirc f \in C', \quad D[f] = f'(x) \in C^{\circ}.$ $\bigotimes \quad D[cf + dg] = cf' + dg'$ = c D[f] + d D[g]. $\lesssim o D B a l. op.$

§ The space of linear functions $\mathcal{L}(V, W)$.

Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W.

Fact 3: $\mathcal{L}(V, W)$ is a vector space. (see Definition 2.1 in textbook for the definition of a vector space)

Combining with Fact 2, we have

Fact 4: If $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$, then the space $\mathcal{M}_{m \times n}$ of all $m \times n$ matrices is a vector space, (which is a fact we already knew.)

Example 4. The space of all linear transformations of the plane, $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ is indeed $\mathcal{M}_{2\times 2}$. And its standard basis are

$$\begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

al. op.

§ Composition.

Fact 5: If $L: V \to W$ is a linear operator and $M: W \to Z$ is another linear operator, then we can define their **composition** $M \circ L : V \to Z$ by

$$(M \circ L)[\mathbf{v}] = M[L[\mathbf{v}]].$$

Then $(M \circ L)$ is linear.

Example 5. If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$ and $Z = \mathbb{R}^k$, then

 $L: \mathbb{R}^n \to \mathbb{R}^m, \qquad M: \mathbb{R}^m \to \mathbb{R}^k$

 $L[\mathbf{v}] = A\mathbf{v}, \qquad M[\mathbf{w}] = B\mathbf{w}$

for some matrices $A = A_{m \times n}$ and $B = B_{k \times m}$. Consequently, the **composition** $M \circ L$ is given by

$$(M \circ L)[\mathbf{v}] = BA[\mathbf{v}].$$

$$I_{I}$$

$$M[L[\mathbf{v}]] = B[A\mathbf{v}].$$

Example 6. Recall in Example 3. $D: \mathcal{O}[[a,b]) \to \mathcal{O}[[a,b])$ defined by D[f](x) = f'(x).

Then $\underline{D \circ D[f]} = D[f'] = f'' \in C^{\circ}$ if $f \in C^{\circ}$

Spring 2021

§ Inverses

Definition: Let $L: V \to W$ be a linear operator. If $M: W \to V$ is an let inverse of L right inverse of L $M \circ L = I_V, \quad L \circ M = I_W$ operator such that (1)

where I_V is the identity map on V, and I_W is the identity map on W. Then we call L is **invertible** and M is the **inverse** of L and write $M = L^{-1}$.

Example 7. If $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$,

 $L: \mathbb{R}^n \to \mathbb{R}^m, \qquad M: \mathbb{R}^m \to \mathbb{R}^n$ $L[\mathbf{v}] = A\mathbf{v}, \qquad M[\mathbf{w}] = B\mathbf{w}$ Then the condition (1) is reduced to $M \circ L[v] = BA v.$ $AB = I_m, \quad BA = I_n.$ $L \circ M[w] = w$

Example X Let $J[f](x) = \int_a^x f(t)dt$ be the integration operator, and D[f](x) = f'(x) be differentiation.

- (1) Compute $D \circ J$.
- (2) Compute $J \circ D$.

To be continued!