Lecture 28: Quick review from previous lecture

- We say $L: V \rightarrow W$ is a linear operator that maps between vector spaces V and W if for all vectors \mathbf{x} and \mathbf{y} in V, and scalars c such that

$$
\begin{aligned}
L[c \mathbf{x}] & =c L[\mathbf{x}] \\
L[\mathbf{x}+\mathbf{y}] & =L[\mathbf{x}]+L[\mathbf{y}] .
\end{aligned}
$$

- Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W. Then $\mathcal{L}(V, W)$ is a vector space.
- If $L: V \rightarrow W$ is a linear operator and $M: W \rightarrow Z$ is another linear operator, then we can define their composition $M \circ L: V \rightarrow Z$ by

$$
(M \circ L)[\mathbf{v}]=M[L[\mathbf{v}]] .
$$

- If $M: W \rightarrow V$ is an operator such that

$$
M \circ L=I_{V}, \quad L \circ M=I_{W}
$$

where I_{V} is the identity map on V, and I_{W} is the identity map on W. Then we call L is invertible and M is the inverse of L and write $M=L^{-1}$.

Today we will discuss

- Section 7.2 linear transformations.

- Lecture will be recorded -

- HW 9 due today at 6 pm .
- Exam 2 (next Wednesday) will cover 2.5, 3.1-3.5, and 4.1-4.4. Instruction and practice exam have been announced on Canvas.

Example 8. Let $J[f](x)=\int_{a}^{x} f(t) d t$ be the integration operator, and $D[f](x)=f^{\prime}(x)$ be differentiation.
$J=c^{\circ} \rightarrow c^{\prime}$
(1) Compute $D \circ J: \boldsymbol{C}^{\circ} \rightarrow \mathbf{C}^{\circ}$
$D=c^{\prime} \rightarrow c^{0}$
(2) Compute $J \circ D: \mathbf{C}^{\prime} \rightarrow \mathbf{C}^{\prime}$
$t \in C^{0}$,
(1)
$D \circ J[t]=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$.
DO $=$ Identity map.
D is left inverse of J.
(2) $t \in c^{\prime}$,

Jo $[f]=\int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)$.
If $f(a)=0, J \circ D=$ Identic, map, D is right
If $f(a) \neq 0, D$ is M right incus of J.

So, when $f(a)=0, D$ is the inverse of J.
7.2 Linear Transformations

Consider a linear function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We have known that
Every linear mapping L from \mathbb{R}^{n} to \mathbb{R}^{m} is given by matrix multiplication, domain codomain

$$
L[\mathbf{x}]=A \mathbf{x}, \quad \text { where } A \text { is an } m \times n \text { matrix. }
$$

The following we will see how the linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the form $L[\mathbf{x}]=A \mathbf{x}$ representing the geometrical interpretation.

We need the formulas

$$
\sin (\theta \pm \phi)=\sin \theta \cos \phi \pm \cos \theta \sin \phi ; \quad \cos (\theta \pm \phi)=\cos \theta \cos \phi \sin \theta \sin \phi
$$

Example 1. If $\mathbf{x}=(r \cos \phi, r \sin \phi)$ is sola \mathbf{r} word. vector in \mathbb{R}^{2} (which we are expressing in terms of its polar coordinates), then find $A \mathbf{x}$.

1. $A=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ (rotation matrix). In addition, $A^{T} A=A A^{T}=I$ so A is orthogonal matrix.

$$
\begin{aligned}
L[\vec{x}]=A \vec{x} & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
r \cos \phi \\
r \sin \phi
\end{array}\right] \\
& =\left[\begin{array}{cc}
r(\cos \theta \cos \phi-\sin \theta \sin \phi) \\
r(\sin \theta \cos \phi+\cos \theta \sin \phi)
\end{array}\right] \xrightarrow[A_{x}]{y}{ }^{r}+\vec{x} \\
& =\left[\begin{array}{cc}
r \cos (\theta+\phi) \\
r \sin (\theta+\phi)
\end{array}\right]
\end{aligned}
$$

rotate counter clockwise by angle θ "
2. $A=\left(\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
similarly-

$$
L[\dot{x}]=A_{\dot{x}}=\left[\begin{array}{c}
\gamma \cos (\phi-\theta) \\
\gamma \sin (\phi-\theta)
\end{array}\right]
$$

rotate docknore by angle θ^{\prime}.
3. $A=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ (reflection) thrown x-axis.

$$
L\left[\binom{x}{y}\right]=A\binom{x}{y}=\binom{x}{-y}
$$

4. $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ (shearing) - Shear along the x-axis of magnitude 2

$$
\begin{aligned}
& L\left[\binom{x}{y}\right]=A\binom{x}{y}=\binom{x+2 y}{y} \\
& A\binom{1}{0}=\binom{1}{0} \\
& A\binom{0}{1}=\binom{y}{1} \\
& A\binom{1}{1}=\left(\begin{array}{l}
(0,1)
\end{array}\right)
\end{aligned}
$$

Example 2. Find the linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which

1. first rotates points counterclockwise about the origin through $\pi / 4$;
2. then reflects points through the x-axis.

$$
\text { 1. } M_{1}[v]=\underbrace{\left[\begin{array}{cc}
\cos \pi / 4 & -\sin \pi / 4 \\
\sin \pi / 4 & \cos \pi / 4
\end{array}\right] V=\frac{\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}{} ~ . ~}_{A}
$$

2.

$$
\begin{aligned}
& M_{2}[v]=\left[\begin{array}{cc}
B & 0 \\
0 & -1
\end{array}\right] v \\
& L[v]=M_{2} \circ M_{1}[v]=B A v
\end{aligned}
$$

§ Change of Basis
Let's first consider the following problem.
Example 3. Take a point $\overrightarrow{\mathbf{x}}=(2,3)$ in \mathbb{R}^{2}, then
$\overrightarrow{\mathbf{x}}=2 \mathbf{e}_{1}+3 \mathbf{e}_{2}, \quad$ where $\mathbf{e}_{1}=(1,0)^{T}, \mathbf{e}_{2}=(0,1)^{T}$ is the standard basis.
If we take another basis $\mathbf{w}_{\mathbf{T}}=(2,1)^{T}, \mathbf{w}_{2}=(-1,2)^{T}$ for \mathbb{R}^{2}, then what is the corresponding coordinate, $(\mathbf{a}, \boldsymbol{b})^{\top} \overrightarrow{\mathbf{x}}$ to this new basis $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$.

$$
\begin{aligned}
& \vec{x}=2 e_{1}+3 e_{2}=a w_{1}+b w_{2} \\
& \text { Find }\binom{a}{b} . \\
& \begin{aligned}
& {\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] } \\
& {\left[\begin{array}{l}
a \\
b
\end{array}\right] }=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]^{-1}\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] . \\
&=\left[\begin{array}{ll}
2 & -1 \\
1 & 2
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 / 5 \\
4 / 5
\end{array}\right], \text { cord. of } \vec{x} \text { to }\left|w_{1}, w_{2}\right| .
\end{aligned}
\end{aligned}
$$

1. In \mathbb{R}^{n}, change coordinates from $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$.

Consider the vector $\overrightarrow{\mathbf{x}}$ in \mathbb{R}^{n} with the coordinate $\left(x_{1}, \ldots, x_{n}\right)^{T}$ in a basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$:

$$
\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n} \quad \text { in a basis } \mathbf{v}_{1}, \cdots, \mathbf{v}_{n}
$$

Q: Consider new basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$, how do we find its corresponding coordinate of the same vector $\overrightarrow{\mathbf{x}}$?

$$
\underbrace{\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)}_{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}} \longrightarrow \underbrace{\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)}_{\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}} ?
$$

In other words, finding $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)^{T}$ such that

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n}=x_{1}^{\prime} \mathbf{w}_{1}+\ldots+x_{n}^{\prime} \mathbf{w}_{n} . \\
& \downarrow \quad \downarrow \\
& {\left[\begin{array}{ccc}
v_{1} & - & v_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{ccc}
w_{1} & - & w_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
\\
x_{n}^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right]=\underset{\text { New }}{T^{-1}} \underset{\text { old }}{S}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .}
\end{aligned}
$$

Example 4. Let $p(x)=2 x^{2}+x+1$, where
$(2,1,1)^{T} \quad$ is the coordinate of p in the monomial basis $\left\{x^{2}, x, 1\right\}$ of $\mathcal{P}^{(2)}$.
Change the coordinate from the monomial basis

$$
\left\{x^{2}, x, 1\right\} \longrightarrow \text { new basis }\left\{x^{2}-x, x-1,1\right\}
$$

Find a, b, c so that

$$
P(x)=2 x^{2}+x+1=a\left(x^{2}-x\right)+b(x-1)+c(1)
$$

Old

$$
\begin{array}{ll}
x^{2} & \xrightarrow{\text { view }}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
x & \longrightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
1 & \left.\longrightarrow \begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=T^{-1} S_{-1}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

$$
=\frac{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) .}{\text { old }}
$$

$$
=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
$$

Check: $2\left(x^{2}-x\right)+3(x-1)+41=p(x)$.
2. A linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L[\mathbf{v}]=A \mathbf{v}$.

Consider the vector $\overrightarrow{\mathbf{x}}$ in \mathbb{R}^{n} with the coordinate $\left(x_{1}, \ldots, x_{n}\right)^{T}$ in a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$:

$$
\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n} \quad \text { in a basis } \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}
$$

\mathbb{R}^{n} with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \quad \longrightarrow \quad \mathbb{R}^{n}$ with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$

$$
\left(x_{1}, \ldots, x_{n}\right)^{T}
$$

$$
L[\vec{x}]=?\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Q: How do we find the coordinate $\left(y_{1}, \ldots, y_{n}\right)^{T}$ of the vector $L[\overrightarrow{\mathbf{x}}]$ to the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$?

$$
\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n} \longrightarrow \overrightarrow{\mathbf{y}}=L[\overrightarrow{\mathbf{x}}]=y_{1} \mathbf{v}_{1}+\ldots+y_{n} \mathbf{v}_{n}
$$

(1)

$$
\begin{aligned}
L[\vec{x}]=L\left[x_{1} v_{1}+\cdots+x_{n} v_{n}\right] & =x_{1} A v_{1}+\cdots+x_{n} A v_{n} \\
& =A\left[\begin{array}{c}
v_{1} \\
\ldots v_{n} \\
\\
\end{array}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
\end{aligned}
$$

(2) $\vec{y}=L[\vec{x}]=y_{1} v_{1}+\cdots+y_{n} v_{n}=\left[\begin{array}{ccc}v_{1} & \ldots & v_{n} \\ & 5 & \end{array}\right]\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$
(1) = (2) yields

$$
\left[\begin{array}{l}
y_{1} \\
y_{n} \\
y_{n}
\end{array}\right]=\underbrace{S^{-1} A S}_{B}\left[\begin{array}{l}
x_{1} \\
\vdots \\
n_{n}
\end{array}\right] .
$$

Poll Question 1: Let $L: V \rightarrow W$ be a linear operator. For $\mathbf{v}, \mathbf{w} \in V$ and scalars c, d, which property is true?

$$
\begin{aligned}
& \text { A) } L[\mathbf{v}+\mathbf{w}]=L[\mathbf{v}]+L[\mathbf{w}] \\
& \text { B) } L[-9 \mathbf{v}]=\bigcirc L[\mathbf{v}] \\
& -9
\end{aligned}
$$

