Lecture 28: Quick review from previous lecture

• We say $L: V \to W$ is a **linear operator** that maps between vector spaces V and W if for all vectors \mathbf{x} and \mathbf{y} in V, and scalars c such that

$$L[\mathbf{c}\mathbf{x}] = \mathbf{c}L[\mathbf{x}]$$
$$L[\mathbf{x} + \mathbf{y}] = L[\mathbf{x}] + L[\mathbf{y}].$$

- Let $\mathcal{L}(V, W)$ be the set of all linear functions L mapping from vector space V to vector space W. Then $\mathcal{L}(V, W)$ is a vector space.
- If $L: V \to W$ is a linear operator and $M: W \to Z$ is another linear operator, then we can define their **composition** $M \circ L: V \to Z$ by

$$(M \circ L)[\mathbf{v}] = M[L[\mathbf{v}]].$$
• If $M : W \to V$ is an operator such that
$$M \circ L = I_V, \quad L \circ M = I_W$$

where I_V is the identity map on V, and I_W is the identity map on W. Then we call L is **invertible** and M is the **inverse** of L and write $M = L^{-1}$.

Today we will discuss

• Section 7.2 linear transformations.

- Lecture will be recorded -

- HW 9 due today at 6pm.
- Exam 2 (next Wednesday) will cover 2.5, 3.1-3.5, and 4.1-4.4. Instruction and practice exam have been announced on Canvas.

Example 8. Let
$$J[f](x) = \int_{a}^{x} f(t)dt$$
 be the integration operator, and
 $D[f](x) = f'(x)$ be differentiation. $J = C^{\circ} \rightarrow C^{\circ}$
(1) Compute $D \circ J: C^{\circ} \rightarrow C^{\circ}$ $D : C^{\circ} \rightarrow C^{\circ}$
(2) Compute $J \circ D.: C^{\circ} \rightarrow C^{\circ}$
 $f \in C^{\circ},$
(1) $D \circ J [+] = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$.
 $D \circ J = Ident: ty map.$
 $D is left means of J.$
 $f \in C^{\circ},$
(2) $J \circ D [+] = \int_{a}^{x} f'(t) dt = f(x) - f(a).$
If $f(a) = 0$, $J \circ D = Ident: ty map.$ $D is right means of J.$
If $f(a) = 0$, $D = Ident: ty map.$ $D is right means of J.$
 $f = f(a) = 0$, $D = Ident: ty map.$ $D = Ident: ty map.$ $D = Ident: ty map.$
 $f = f(a) = 0$, $D = Ident: ty map.$ $D = Ident: ty map.$ $D = Ident: ty map.$
 $f = f(a) = 0$, $D = Ident: ty map.$ $D = Ident: ty map.$ $D = Ident: ty map.$ $f = Ident: ty map.$
 $f = f(a) = 0$, $D = Ident: ty map.$ $D = Ident: ty map.$ $D = Ident: ty map.$ $f = Ident: ty map.$
 $f = f(a) = 0$, $D = Ident: ty map.$ $D = Ident: ty map.$ $f = Ident$

MATH 4242-Week 10-3

7.2 Linear Transformations

Consider a linear function $L: \mathbb{R}^n \to \mathbb{R}^m$. We have known that

Every linear mapping L from \mathbb{R}^n to \mathbb{R}^m is given by matrix multiplication, doman codomain $L[\mathbf{x}] = A\mathbf{x}$, where A is an $m \times n$ matrix.

The following we will see how the linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$ of the form $L[\mathbf{x}] = A\mathbf{x}$ representing the geometrical interpretation.

We need the formulas

 $\frac{\sin(\theta \pm \phi) = \sin\theta \cos\phi \pm \cos\theta \sin\phi}{\text{Example 1. If } \mathbf{x} = (r\cos\phi, r\sin\phi) \text{ is some vector in } \mathbb{R}^2 \text{ (which we are expressing)}$ in terms of its polar coordinates), then find $A\mathbf{x}$. 1. $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ (rotation matrix). In addition, $A^T A = A A^T = I$ so A is orthogonal matrix. $L[\vec{x}] = A \vec{x} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} r\cos \phi \\ r\sin \phi \end{bmatrix}$ $= \begin{bmatrix} \gamma (\omega s \theta \otimes s \phi - s in \theta s in \phi) \\ \gamma (s in \theta \cos \phi + \cos \theta s in \phi) \end{bmatrix}$ $= \begin{bmatrix} Y & \cos(\Theta + \phi) \\ Y & \sin(\Theta + \phi) \end{bmatrix}$ counter clockwise by angle 0 rotate 2. $A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$ Similarly $L[\dot{z}] = A\dot{z} = \begin{bmatrix} r \cos(\phi - \theta) \\ \sigma \sin(\phi - \theta) \end{bmatrix}$ MATH 4242-Week 10-3 rotate dochare b

Spring 2021

3.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (reflection) through $\times -axis$.
 $L \begin{bmatrix} \begin{pmatrix} x \\ y \end{bmatrix} \end{bmatrix} = A \begin{pmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} x \\ -y \end{bmatrix}$
4. $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ (shearing) - Shear along the *x*-axis of magnitude 2
 $L \begin{bmatrix} \begin{pmatrix} x \\ y \end{bmatrix} \end{bmatrix} = A \begin{pmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} x+2y \\ y \end{bmatrix}$
 $A \begin{pmatrix} 1 & 0 \\ 0 \end{bmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2y \\ y \end{bmatrix}$
 $A \begin{pmatrix} 1 & 0 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix}$
 $A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$
 $A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$
Example 2. Find the linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ which
1. first rotates points counterclockwise about the origin through $\pi/4$;
2. then reflects points through the *x*-axis.
 $I = M_1 \begin{bmatrix} v \end{bmatrix} = \begin{bmatrix} x & 0 & 0 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$
 $A \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \vee$

§ Change of Basis

Let's first consider the following problem.

Example 3. Take a point $\vec{\mathbf{x}} = (2,3)$ in \mathbb{R}^2 , then

 $\vec{\mathbf{x}} = 2\mathbf{e}_1 + 3\mathbf{e}_2$, where $\mathbf{e}_1 = (1, 0)^T$, $\mathbf{e}_2 = (0, 1)^T$ is the standard basis.

If we take another basis $\mathbf{w}_1 = (2, 1)^T$, $\mathbf{w}_2 = (-1, 2)^T$ for \mathbb{R}^2 , then what is the corresponding coordinate of $\vec{\mathbf{x}}$ to this new basis $\{\mathbf{w}_1, \mathbf{w}_2\}$.

1. In \mathbb{R}^n , change coordinates from $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to $\mathbf{w}_1, \ldots, \mathbf{w}_n$. Consider the vector $\vec{\mathbf{x}}$ in \mathbb{R}^n with the coordinate $(x_1, \ldots, x_n)^T$ in a basis $\mathbf{v}_1, \cdots, \mathbf{v}_n$:

$$\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$$
 in a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$

Q: Consider new basis $\mathbf{w}_1, \ldots, \mathbf{w}_n$, how do we find its corresponding coordinate of the same vector $\vec{\mathbf{x}}$?

In other words, finding $(x'_1, \ldots, x'_n)^T$ such that

Example 4. Let $p(x) = 2x^2 + x + 1$, where

 $(2,1,1)^T$ is the coordinate of p in the monomial basis $\{x^2, x, 1\}$ of $\mathcal{P}^{(2)}$. Change the coordinate from the monomial basis

$$\{x^{2}, x, 1\} \rightarrow \text{new basis} \{x^{2} - x, x - 1, 1\}$$
Find a, b, c so that
$$p(x) = 2x^{2} + x + i = a(x^{2} - x) + b(x - i) + c(i)$$

$$\frac{O(d)}{x^{2}} \xrightarrow{\text{view}} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{x^{2} - x} \xrightarrow{(i)} \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$x \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{y} x - i \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{y} x - i \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$i \longrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} = T^{-1} S \begin{pmatrix} 2 \\ i \end{pmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ i \end{pmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$Vew = id = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$Vew = id = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. A linear operator $L: \mathbb{R}^n \to \mathbb{R}^n, L[\mathbf{v}] = A\mathbf{v}$. Consider the vector $\vec{\mathbf{x}}$ in \mathbb{R}^n with the coordinate $(x_1, \ldots, x_n)^T$ in a basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$: $\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \ldots + x_n \mathbf{v}_n$ in a basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ \mathbb{R}^n with basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ \mathbb{R}^n with basis $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ $(x_1,\ldots,x_n)^T$ $L[\vec{x}] = ? \begin{pmatrix} y_1 \\ \vdots \\ \vdots \end{pmatrix}$ **Q:** How do we find the coordinate $(y_1, \ldots, y_n)^T$ of the vector $L[\vec{\mathbf{x}}]$ to the basis $\mathbf{v}_1,\ldots,\mathbf{v}_n$? $\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \ldots + x_n \mathbf{v}_n \longrightarrow \vec{\mathbf{y}} = L[\vec{\mathbf{x}}] = y_1 \mathbf{v}_1 + \ldots + y_n \mathbf{v}_n$ $L[\vec{x}] = L[x, v_1 + \dots + x_n v_n] = x_i A v_i + \dots + x_n A v_n$ \bigcirc $= A[v_1 \cdots v_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ $(2) \vec{y} = L[\vec{x}] = (y_1 v_1 + \cdots + y_n v_n) = [v_1 - \cdots + v_n] \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$ ()=(2) yields

 $B = S^{-1}AS \text{ is the matrix representation of } L \text{ is bases } \mathbf{v}_1, \dots, \mathbf{v}_n \text{ and } \mathbf{v}_1, \dots, \mathbf{v}_n.$ $MOTE = A \text{ is matrix representation of } L \text{ in standard basis } [e_i]_{Spring 2021}$

 $\begin{bmatrix} y_{i} \\ y_{m} \end{bmatrix} = \begin{bmatrix} s^{T} A S \begin{bmatrix} x_{i} \\ \vdots \\ x_{m} \end{bmatrix}$

Poll Question 1: Let $L: V \to W$ be a linear operator. For $\mathbf{v}, \mathbf{w} \in V$ and scalars c, d, which property is true?

A)
$$L[\mathbf{v} + \mathbf{w}] = L[\mathbf{v}] + L[\mathbf{w}]$$

B) $L[-9\mathbf{v}] = 9L[\mathbf{v}]$