
Lecture 28: Quick review from previous lecture

• We say L : V ! W is a linear operator that maps between vector spaces
V and W if for all vectors x and y in V , and scalars c such that

L[cx] = cL[x]

L[x + y] = L[x] + L[y].

• Let L(V,W ) be the set of all linear functions L mapping from vector space V
to vector space W . Then L(V,W ) is a vector space.

• If L : V ! W is a linear operator and M : W ! Z is another linear operator,
then we can define their composition M � L : V ! Z by

(M � L)[v] = M [L[v]].

• If M : W ! V is an operator such that

M � L = IV , L �M = IW

where IV is the identity map on V , and IW is the identity map on W . Then
we call L is invertible and M is the inverse of L and write M = L�1.

—————————————————————————————————
Today we will discuss

• Section 7.2 linear transformations.

- Lecture will be recorded -

—————————————————————————————————

• HW 9 due today at 6pm.

• Exam 2 (next Wednesday) will cover 2.5, 3.1-3.5, and 4.1-4.4.
Instruction and practice exam have been announced on Canvas.
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Example 8. Let J [f ](x) =
R x
a f (t)dt be the integration operator, and

D[f ](x) = f 0(x) be di↵erentiation.

(1) Compute D � J .

(2) Compute J �D.
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7.2 Linear Transformations

Consider a linear function L : Rn ! Rm. We have known that

Every linear mapping L from Rn to Rm is given by matrix multiplication,

L[x] = Ax, where A is an m⇥ n matrix.

The following we will see how the linear transformation L : R2 ! R2 of the form
L[x] = Ax representing the geometrical interpretation.

We need the formulas

sin(✓ ± �) = sin ✓ cos�± cos ✓ sin�; cos(✓ ± �) = cos ✓ cos�⌥ sin ✓ sin�

Example 1. If x = (r cos�, r sin�) is some vector in R2 (which we are expressing
in terms of its polar coordinates), then find Ax.

1. A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
(rotation matrix). In addition, ATA = AAT = I so

A is orthogonal matrix.

x

y

2. A =

✓
cos ✓ sin ✓

� sin ✓ cos ✓

◆

x

y
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3. A =

✓
1 0
0 �1

◆
(reflection)

x

y

4. A =

✓
1 2
0 1

◆
(shearing) - Shear along the x-axis of magnitude 2

x

y

Example 2. Find the linear transformation L : R2 ! R2 which

1. first rotates points counterclockwise about the origin through ⇡/4;

2. then reflects points through the x-axis.
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§ Change of Basis
Let’s first consider the following problem.
Example 3. Take a point ~x = (2, 3) in R2, then

~x = 2e1 + 3e2, where e1 = (1, 0)T , e2 = (0, 1)T is the standard basis.

If we take another basis w1 = (2, 1)T , w2 = (�1, 2)T for R2, then what is the
corresponding coordinate of ~x to this new basis {w1,w2}.

x

y
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1. In Rn, change coordinates from v1, . . . ,vn to w1, . . . ,wn.
Consider the vector ~x in Rn with the coordinate (x1, . . . , xn)T in a basis v1, · · · ,vn:

~x = x1v1 + · · · + xnvn in a basis v1, · · · ,vn

Q: Consider new basis w1, . . . ,wn, how do we find its corresponding coordinate
of the same vector ~x?

0

@
x1
...
xn

1

A

| {z }
v1,··· ,vn

�!

0

@
x01
...
x0n

1

A

| {z }
w1,··· ,wn

?

In other words, finding (x01, . . . , x
0
n)

T such that

~x = x1v1 + . . . + xnvn = x01w1 + . . . + x0nwn.
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Example 4. Let p(x) = 2x2 + x + 1, where

(2, 1, 1)T is the coordinate of p in the monomial basis {x2, x, 1} of P (2).

Change the coordinate from the monomial basis

{x2, x, 1} �! new basis {x2 � x, x� 1, 1}
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2. A linear operator L : Rn ! Rn, L[v] = Av.
Consider the vector ~x in Rn with the coordinate (x1, . . . , xn)T in a basis v1, . . . ,vn:

~x = x1v1 + . . . + xnvn in a basis v1, . . . ,vn

Rn with basis {v1, . . . ,vn} �! Rn with basis {v1, . . . ,vn}
(x1, . . . , xn)

T ?

Q: How do we find the coordinate (y1, . . . , yn)T of the vector L[~x] to the basis
v1, . . . ,vn ?

~x = x1v1 + . . . + xnvn �! ~y = L[~x] = y1v1 + . . . + ynvn

B = S�1AS is the matrix representation of L is bases v1, . . . ,vn and v1, . . . ,vn.
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Poll Question 1: Let L : V ! W be a linear operator. For v,w 2 V and
scalars c, d, which property is true?

A) L[v +w] = L[v] + L[w]
B) L[�9v] = 9L[v]
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