Lecture 29: Quick review from previous lecture

where $S = [\mathbf{v}_1, \dots, \mathbf{v}_n]$. The **matrix representation** of L in these bases is $B = S^{-1}AS$.

Today we will discuss

• Section 7.2 linear transformations.

- Lecture will be recorded -

- Exam 2 (**This Wednesday**) will cover 2.5, 3.1-3.5, and 4.1-4.4. Instruction and practice exam have been announced on Canvas.
- Exam time is 50 mins with additional 10 mins for scanning and submission to Canvas. This is a closed book exam and everyone needs to Open Camera.

3. A linear operator $L : \mathbb{R}^n \to \mathbb{R}^m$, $L[\mathbf{v}] = A$. Consider the vector $\vec{\mathbf{x}}$ in \mathbb{R}^n with the coordinate $(x_1, \ldots, x_n)^T$ in a basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$: $\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \ldots + x_n \mathbf{v}_n$ in a basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ $\xrightarrow{}$ \mathbb{R}^n with basis $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ \mathbb{R}^m with basis $\{\mathbf{w}_1,\ldots,\mathbf{w}_m\}$ ontput L[x] ?, (*) $(x_1,\ldots,x_n)^T$ **Q:** How do we find the coordinate $(y_1, \ldots, y_m)^T$ of the vector $L[\vec{\mathbf{x}}]$ to the basis $\mathbf{w}_1,\ldots,\mathbf{w}_m?$ $\vec{\mathbf{x}} = x_1 \mathbf{v}_1 + \ldots + x_n \mathbf{v}_n \longrightarrow \vec{\mathbf{y}} = L[\vec{\mathbf{x}}] = y_1 \mathbf{w}_1 + \ldots + y_m \mathbf{w}_m$ $(L [\vec{x}] = L [x_1 v_1 + \dots + x_n v_n] = x_1 L [v_1] + \dots + x_n L [v_n] .$ $= x_1 A v_1 + \dots + x_n A v_n = A [v_1 - \dots v_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ ② y=L[x] = y, w, + ··· + y, w, m $= \begin{bmatrix} w_1 & \cdots & w_m \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$ 1 = 2 xields T[?] = AS[?]Then

 $B = T^{-1}AS$ is the matrix representation of L in bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and $\mathbf{w}_1, \ldots, \mathbf{w}_m$, where $T = [\mathbf{w}_1, \ldots, \mathbf{w}_m]$ and $S = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$. \checkmark One reason for changing basis is that some coordinate systems are betteradapted for a particular operator L than others. $L : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$

Example 5. Consider the operator A $L\left[\begin{pmatrix} x\\ y \end{pmatrix}\right] = \begin{pmatrix} 5 & -1\\ -1 & 5 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 5x-y\\ 5y-x \end{pmatrix}$

Consider a new basis $\mathbf{v}_1 = (1, -1)^T$, $\mathbf{v}_2 = (1, 1)^T$ for both domain and codomain. The matrix representation of L in the basis \mathbf{v}_1 , \mathbf{v}_2 is

$$B = S^{T}AS = [v_{1}, v_{2}]^{-1} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} [v_{1}, v_{2}] \\ = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{bmatrix} 6 \\ 0 & 4 \end{bmatrix} = B$$

$$L[v_{1}] = Av_{1} = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \end{bmatrix} = 6V_{1} \qquad y \qquad L[v_{1}]^{-4}av_{2}$$

$$L[v_{2}] = Av_{2} = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -6 \end{bmatrix} = 6V_{1} \qquad y \qquad L[v_{3}]^{-4}av_{2}$$

$$coord. m[v_{1}, v_{3}] \qquad b \qquad coord. m[v_{1}, v_{4}].$$

$$v_{4} \qquad v_{4} \qquad v_$$

- In other words, if $\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2$, then $L[\mathbf{x}] = 6a\mathbf{v}_1 + 4b\mathbf{v}_2$. So L scales along the direction of \mathbf{v}_1 by 6, and scales along the direction of \mathbf{v}_2 by 4.
- The simple geometry of L is only revealed by the new basis; it is not apparent from the matrix in the standard basis, $\begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$.

Example 6. Suppose we have the operator $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$L\left[\begin{pmatrix}x\\y\\z\end{pmatrix}\right] = \begin{pmatrix}x+y\\y+z\end{pmatrix} = \begin{bmatrix}1&0\\0&1\end{bmatrix}\begin{bmatrix}x\\y\\g\end{bmatrix}$$

The matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ represents L in the standard basis. [2, e, e, fruction \mathbb{R}^3 Q: Consider the basis \mathbb{R}^3 (e, e.) to \mathbb{R}^3

$$\mathbf{v}_1 = (1, 0, 1)^T$$
, $\mathbf{v}_2 = (1, -1, 0)^T$, $\mathbf{v}_3 = (0, 1, -1)^T$ of \mathbb{R}^3

and

$$\mathbf{w}_1 = (1, 1)^T$$
, $\mathbf{w}_2 = (-1, 1)^T$ of \mathbb{R}^2 .

What would be the matrix representation of L in these bases?

So applying B to the coefficients of a vector \mathbf{v} in the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ returns the coefficients of $L[\mathbf{v}]$ in the basis $\mathbf{w}_1, \mathbf{w}_2$.

Example 6. Recall that $\mathcal{P}^{(2)}$ is the vector space of polynomials of degree ≤ 2 ; $\mathcal{P}^{(1)}$ is the vector space of polynomials of degree ≤ 1 .

Let the linear operator $L: \mathcal{P}^{(2)} \to \mathcal{P}^{(1)}$ satisfy

 $\begin{array}{c} \chi^2 \rightarrow \\ \chi \rightarrow \\ \downarrow \rightarrow \\ \downarrow \rightarrow \end{array} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

501:

 $\chi^{2} \rightarrow \chi^{2}$, $V_{1} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

x - 1 , $v_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$

$$L[p](x) = p'(x)$$

(1) Consider the basis $\{x^2, x, 1\}$ for $\mathcal{P}^{(2)}$ and the basis for $\{x, 1\}$ for $\mathcal{P}^{(1)}$. Find the matrix representation of L in these bases.¹ Taking any $p(x) = ax^2 + bx + c \ln P^{(2)}$.

 $L[ax^{2}+bx+c] = 2ax+b.$

/view

 $\begin{pmatrix} 2a \\ b \end{pmatrix}$

 $2 \times , w_{1} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

 $1, \omega_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(2) We instead use the basis $\{x^2 - x, x - 1, 1\}$ for $\mathcal{P}^{(2)}$ and the basis $\{2x, 1\}$ for $\mathcal{P}^{(1)}$. Find the matrix representation of L in these bases. P12)

→ *P*''

 $V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $B = T^{T}AS = [w_{1}w_{1}]^{T}A[v_{1}v_{2}v_{3}]$ ^{1*}Note that the matrix A that represents L depends on the choice of basis for $\mathcal{P}^{(2)}$ and $\mathcal{P}^{(1)}$.

1

§ Canonical form of the operator L.

We take any matrix $A = A_{m \times n}$ with rank A = r. Let $L[\mathbf{x}] = A\mathbf{x}$. Consider "a suitable choice of bases" for domain and codomain:

Then the matrix representation of L in bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and $\mathbf{w}_1, \ldots, \mathbf{w}_m$ is $B = T^{-1}AS = \begin{bmatrix} I_r & O_{r \times (n-r)} \\ O_{(m-r) \times r} & O_{(m-r) \times (n-r)} \end{bmatrix}_{m \times n}$ (Canonical Form), where $T = [\mathbf{w}_1, \ldots, \mathbf{w}_m]$ and $S = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$ with $A\mathbf{v}_j = \mathbf{w}_j$ for j = 1, ..., r.

[To see this:] Take $\mathbf{v}_1, \ldots, \mathbf{v}_r$ a basis for coimg A, and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ a basis for ker A. So $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are a basis for \mathbb{R}^n .

As we've known, $\{\mathbf{w}_1 = A\mathbf{v}_1, \dots, \mathbf{w}_r = A\mathbf{v}_r\}$ will be a basis for img A.

Remark: In other words, the top r-by-r block is the identity, and everywhere else it has 0. This is the **canonical form** of the operator L, that depends "only" on its rank.

 $L = \mathbb{R}^{*} - \mathbb{R}^{*}$ **Example 7.** Let the operator $L[\mathbf{x}] = A\mathbf{x}$, where $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{pmatrix}.$ Find the **canonical form** of the operator $L[\mathbf{x}] = A\mathbf{x}$. $\rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, rank A = 1. Canonical torm of L \mathbb{R}^{3} 2 IR Coing A mg Asw,] KerA coker A a basil the cosing $A : \left\{ \frac{V_{i}}{2} \right\}$ Fmd $m_{g} A = \{ w = A v = (1) \}$ 1 $\ker A = \left\{ v_3 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$ wher A_2 ($W_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ $W_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$) MATH 4242-Week 11-1