Lecture 29: Quick review from previous lecture
$\boldsymbol{\rho}$ In \mathbb{R}^{n}, for vector $\overrightarrow{\mathbf{x}}$, change coordinates from $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$:
$\overrightarrow{\mathbf{X}}=X_{1} v_{1}+\ldots+X_{n} V_{n}$

$$
\underbrace{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]}_{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}} \longrightarrow \underbrace{\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right]}_{\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}} \quad \text { is } \quad \begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}]=\begin{array}{cc}
{\left[\mathbf{w}_{1} \ldots \mathbf{w}_{n}\right]^{-1}\left[\begin{array}{c}
\mathbf{v}_{1} \ldots \\
\text { New }
\end{array} \begin{array}{c}
\mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]}
\end{array}
$$

- Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L[\mathbf{x}]=A \mathbf{x}$.
\mathbb{R}^{n} with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \quad \longrightarrow \quad \mathbb{R}^{n}$ with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$

$$
\begin{aligned}
& \underset{\text { input }}{\overrightarrow{\mathbf{x}},\left(x_{1}, \ldots, x_{n}\right)^{T}} \quad \begin{array}{c}
L[\overrightarrow{\mathbf{x}}],\left(y_{1}, \ldots, y_{n}\right)^{T} \\
\text { output }
\end{array} \\
& \\
& {\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\underbrace{S^{-1} A S}_{B}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right],}
\end{aligned}
$$

Then
where $S=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$. The matrix representation of L in these bases is $B=S^{-1} A S$.

Today we will discuss

- Section 7.2 linear transformations.

- Lecture will be recorded -

- Exam 2 (This Wednesday) will cover 2.5, 3.1-3.5, and 4.1-4.4. Instruction and practice exam have been announced on Canvas.
- Exam time is 50 mins with additional 10 mins for scanning and submission to Canvas. This is a closed book exam and everyone needs to Open Camera.

3. A linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Consider the vector $\overrightarrow{\mathbf{x}}$ in \mathbb{R}^{n} with the coordinate $\left(x_{1}, \ldots, x_{n}\right)^{T}$ in a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$:

$$
\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n} \quad \text { in a basis } \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}
$$

\mathbb{R}^{n} with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \quad \xrightarrow{L}$

$$
\overrightarrow{\mathbf{x}} \quad\left(x_{1}, \ldots, x_{n}\right)^{T}
$$

\mathbb{R}^{m} with basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$
output

$$
\begin{gathered}
\text { output } \\
L[\vec{x}]
\end{gathered} ?,\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right) .
$$

Q: How do we find the coordinate $\left(y_{1}, \ldots, y_{m}\right)^{T}$ of the vector $L[\overrightarrow{\mathbf{x}}]$ to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$?

$$
\overrightarrow{\mathbf{x}}=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n} \longrightarrow \overrightarrow{\mathbf{y}}=L[\overrightarrow{\mathbf{x}}]=y_{1} \mathbf{w}_{1}+\ldots+y_{m} \mathbf{w}_{m}
$$

(1)

$$
\begin{aligned}
L[\vec{x}] & =L\left[x_{1} v_{1}+\cdots+x_{n} v_{n}\right]=x_{1} L\left[v_{1}\right]+\cdots+x_{n} L\left[v_{n}\right] . \\
& =x_{1} A v_{1}+\cdots+x_{n} A v_{n}=A\left[\begin{array}{c}
v_{1} \\
\cdots \\
S
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
\end{aligned}
$$

(2)

$$
\begin{aligned}
y=L[\vec{x}] & =y_{1} w_{1}+\cdots+y_{m} w_{m} \\
& =\left[\begin{array}{lll}
w_{1} & \cdots & w_{m}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right] .
\end{aligned}
$$

(1) 2 yields

$$
T\left[\begin{array}{l}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=A S\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Then $\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]=T^{-1} S\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$.
$B=T^{-1} A S$ is the matrix representation of L in bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$, where $T=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ and $S=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$.
\checkmark One reason for changing basis is that some coordinate systems are betteradapted for a particular operator L than others.

$$
L=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

Example 5. Consider the operator

$$
L\left[\binom{x}{y}\right]=\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\binom{x}{y}=\binom{5 x-y}{5 y-x}
$$

Consider a new basis $\mathbf{v}_{1}=(1,-1)^{T}, \mathbf{v}_{2}=(1,1)^{T}$ for both domain and codomain. The matrix representation of L in the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ is

$$
\begin{aligned}
& B=S^{-1} A S=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]^{-1}\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right] \\
& =\frac{1}{2}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right)=\boldsymbol{B} \\
& L\left[v_{1}\right]=A v_{1}=\left[\begin{array}{cc}
5 & -1 \\
-1 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6
\end{array}\right]=6 v_{1} \\
& L\left[v_{2}\right]=A v_{2}=\left[\begin{array}{cc}
5 & -1 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]=4 v_{2} \\
& \text { ord. in }\left\{v_{1}, v_{2}\right\} \xrightarrow{L} \text { courd.in }\left\{v_{1}, v_{2}\right\} \text {. } \\
& \mid v_{1}+0 v_{2} ;\binom{1}{0} \xrightarrow{B} B\binom{1}{0}=\binom{6}{0} ; 6 v_{1}+0 v_{2} \\
& O v_{1}+1 v_{2} ;\binom{0}{1} \\
& \xrightarrow{B} B\binom{0}{1}=\binom{0}{4} ; 0 v_{1}+4 v_{2}
\end{aligned}
$$

- In other words, if $\mathbf{x}=a \mathbf{v}_{1}+b \mathbf{v}_{2}$, then $L[\mathbf{x}]=6 a \mathbf{v}_{1}+4 b \mathbf{v}_{2}$. So L scales along the direction of \mathbf{v}_{1} by 6 , and scales along the direction of \mathbf{v}_{2} by 4 .
- The simple geometry of L is only revealed by the new basis; it is not apparent from the matrix in the standard basis, $\left(\begin{array}{rr}5 & -1 \\ -1 & 5\end{array}\right)$.

Example 6. Suppose we have the operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left[\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right]=\binom{x+y}{y+z}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

The matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ represents L in the standard basis. $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\rfloor f_{w} \mathbb{R}^{3}$ Q: Consider the basis $\&\left\langle e_{1}, e_{2}\right|+\infty \mathbb{R}^{2}$.

$$
\mathbf{v}_{1}=(1,0,1)^{T}, \quad \mathbf{v}_{2}=(1,-1,0)^{T}, \quad \mathbf{v}_{3}=(0,1,-1)^{T} \quad \text { of } \mathbb{R}^{3}
$$

and

$$
\mathbf{w}_{1}=(1,1)^{T}, \quad \mathbf{w}_{2}=(-1,1)^{T} \quad \text { of } \mathbb{R}^{2} .
$$

What would be the matrix representation of L in these bases?

$$
\mathbb{R}^{3},\left\{V_{i} \mid \xrightarrow{L}, \mathbb{R}^{2},\left\langle w_{i}\right|\right.
$$

matrix repsecentation of L

$$
\left.\begin{array}{rlrl}
B & =T^{-1} A S, \text { where } T=\left[w_{1} w_{2}\right.
\end{array}\right]
$$

Obsemation: cord. in $\left\{v_{i} \mid \xrightarrow{L}\right.$ word. in $\left\{w_{i} \mid\right.$.

$$
\begin{array}{ll}
1 v_{1}+0 v_{2}+0 v_{3} ;\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) & \xrightarrow{B} B\binom{1}{0}=\binom{1}{0} ; 1 w_{1}+0 w_{2} . \\
0 v_{1}+1 v_{2}+0 v_{3} ;\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) & \left.\xrightarrow{B}\binom{0}{0}=\binom{-1 / 2}{-1 / 2} ;-\frac{1}{2} w_{1}++\frac{1}{2}\right) w_{2}
\end{array}
$$

So applying B to the coefficients of a vector \mathbf{v} in the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ returns the coefficients of $L[\mathbf{v}]$ in the basis $\mathbf{w}_{1}, \mathbf{w}_{2}$.

Example 6. Recall that $\mathcal{P}^{(2)}$ is the vector space of polynomials of degree ≤ 2; $\mathcal{P}^{(1)}$ is the vector space of polynomials of degree ≤ 1.

Let the linear operator $L: \mathcal{P}^{(2)} \rightarrow \underline{\mathcal{P}^{(1)}}$ satisfy

$$
L[p](x)=p^{\prime}(x)
$$

(1) Consider the basis $\left\{x^{2}, x, 1\right\}$ for $\mathcal{P}^{(2)}$ and the basis for $\{x, 1\}$ for $\mathcal{P}^{(1)}$. Find the matrix representation of L in these bases. ${ }^{1}$

Taking any $p(x)=a x^{2}+b x+c$ in $p^{(2)}$.

$$
\begin{aligned}
\left.L a x^{2}+b x+c\right] \\
\text { buiew }
\end{aligned}=2 a x+b .
$$

Sol: A.
(2) We instead use the basis $\left.x^{2}-x, x-1,1\right\}$ for $\mathcal{P}^{(2)}$ and the basis $\{2 x, 1\}$ for $\mathcal{P}^{(1)}$. Find the matrix representation of L in these bases.

$$
\begin{aligned}
& p^{(2)} \longrightarrow p^{(1)} \\
& x^{2}-x, v_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \quad 2 x \quad, w_{1}=\binom{2}{0} \\
& x-1, v_{2}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) \quad 1, \omega_{2}=\binom{0}{1} \\
& 1, \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& B=T^{-1} A S=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]^{-1} A\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right] . \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 \\
\hline
\end{array}\right] \text {. }
\end{aligned}
$$

\S Canonical form of the operator L.
We take any matrix $A=A_{m \times n}$ with rank $A=r$. Let $L[\mathbf{x}]=A \mathbf{x}$.
Consider "a suitable choice of bases" for domain and codomain:

\[

\]

Then the matrix representation of L in bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ is

$$
B=T^{-1} A S=\left[\begin{array}{cc}
I_{r} & O_{r \times(n-r)} \\
O_{(m-r) \times r} & O_{(m-r) \times(n-r)}
\end{array}\right]_{m \times n} \quad \text { (Canonical Form), }
$$

where $T=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ and $S=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ with $A \mathbf{v}_{j}=\mathbf{w}_{j}$ for $j=1, \ldots, r$.
[To see this:] Take $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ a basis for coimg A, and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}$ a basis for jer A. So $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are a basis for \mathbb{R}^{n}.
As we've known, $\left\{\mathbf{w}_{1}=A \mathbf{v}_{1}, \ldots, \mathbf{w}_{r}=A \mathbf{v}_{r}\right\}$ will be a basis for $\operatorname{img} A$.

Take $\mathbf{w}_{r+1}, \ldots, \mathbf{w}_{m}$ to be any basis for cover A. Then

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{v}_{\mathbf{i}}=\mathbf{w}_{\mathbf{i}}^{\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}, \mathbf{w}_{r+1}, \cdots \mathbf{w}_{m}\right\} \quad \text { is a basis for } \mathbb{R}^{m} \text {. } \text {. }{ }_{\mathbf{i}} \leq \boldsymbol{\gamma}} . \\
& A v_{j}=0, \quad r+1 \leq j \leq n \sin e v_{j} \in \operatorname{ken} A \text {. } \\
& A\left[\begin{array}{lllll}
\overline{v_{1}} & \ldots & v_{r} & v_{r+1} & \ldots \\
v_{n}
\end{array}\right]=\left[\begin{array}{lllll}
w_{1} & \ldots & w_{r} & 0 & \ldots
\end{array}\right] \\
& =\left[\begin{array}{lll}
w_{1} & \cdots w_{r} w_{v+1} & -w_{n}
\end{array}\right]\left[\begin{array}{lll}
I_{r} & 0 \\
\hline O & 0
\end{array}\right] .
\end{aligned}
$$

Remark: In other words, the top r-by- r block is the identity, and everywhere else it has 0 . This is the canonical form of the operator L, that depends "only" on its rank.

Example 7. Let the operator $L[\mathrm{x}]=A \mathrm{x}$, where $L=\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$.

$$
A=\left(\begin{array}{rr}
1 & 2 \\
2 & 4 \\
-1 & -2
\end{array}\right)
$$

Find the canonical form of the operator $L[\mathbf{x}]=A \mathbf{x}$.

Find a basis t_{u} coning $A:\left\{v_{1}=\binom{1}{2}\right\}$

$$
\begin{array}{ll}
\text { " } \quad \operatorname{lng} A=\left\{w_{1}=A v_{1}=\left(\begin{array}{c}
5 \\
10 \\
-5
\end{array}\right)\right\} \\
\Rightarrow \quad & \operatorname{ker} A=\left\{v_{2}=\binom{-2}{1}\right\} \\
\Rightarrow \quad \text { weer } A=\left\{w_{2}=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right), \quad w_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\}
\end{array}
$$

