
Lecture 3: Quick review from previous lecture

• We have learned how to use Gaussian elimination to solve a linear system
Ax = b when A is regular, that means that a matrix only has nonzero
pivots.

• We have shown that such regular matrix A can be factored as

A = LU,

where U is upper triangular and L is lower triangular.
Furthermore, L has 1’s on its main diagonal, and U has non-zero elements on
its main diagonal (the pivots of A).

—————————————————————————————————
Today we will

• continue discuss Sec. 1.3 Gaussian Elimination

• discuss Sec. 1.4 Pivoting and Permutations

- Lecture will be recorded -

—————————————————————————————————

• The first homework is due this Friday (1/29) at 6pm.
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Example 4: Find LU factorization of the matrix
0

@
1 �2 1
4 �5 3
1 4 �2

1

A
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§Use “LU factorization” to solve a linear system Ax = b.

We do this by solving 2 linear systems:

Example 5: Consider the same matrix A as in Example 4,

A =

0

@
1 �2 1
4 �5 3
1 4 �2

1

A and b =

0

@
1
6
3

1

A .

Solve Ax = b by using LU factorization.

MATH 4242-Week 2-1 3 Spring 2021

A x = b
.

⇒ LI b
,

y

L" "ten : ¥÷?,,;fL7µ .

solve two K "'Y'
'

9:17am.

2nd system = Ux=IT .

Solve for x by using
"

back

(7) x = y
substitution!

I. /Ly=T

it Hi.tt:L
.

①y ; ⑦ 4 t y. = 6 ⇒y
③ I t 2 ( 2) t y, = 3 ⇒ y, = - z

2
.

-

c
'

:
-

I "÷H÷ ,
38¥

.
a ⇒ x

*① X , - 2X , t Xz = I ⇒



1.4 Pivoting and Permutations

From the following example, we will learn how to handle the situation, where some
pivot of the matrix A is zero when we perform Gaussian Elimination.
Example 1. Solve the linear system Ax = b, where

A =

0

@
1 2 3
2 4 2
1 3 1

1

A , b =

0

@
1
4
5

1

A
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The operation of permuting two rows of the matrix (or equivalently permuting
the order of equations), is called pivoting.

From now on,

when we refer to “Elementary Row Operation”: It includes

• the 1st type of elementary row operation: add/subtracting a multiple
of one row to/from another row

• the 2nd type of elementary row operation: pivoting

Definition: We say that a square matrix is nonsingular if this matrix can be
reduced to upper triangular form with all non-zero diagonal elements by using
only

1st and 2nd elementary row operations

Remark: Every regular| {z }
no zero pivot

square matrix A is nonsingular, but the converse

implication is NOT true.

Definition: A matrix that is not nonsingular is called singular.
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Definition: A permutation matrix is a matrix obtained from the identity
matrix In by any combination of row interchanges.

Example 2:

(1) Write down the 3-by-3 permutation matrix that swaps the order of rows 2 and
3.

(2) Let B =

0

@
1 1 2
2 2 5
3 4 7

1

A

(a) PB =

(b) Is B regular?

Example 3: Same matrix B as in Example 2. Let P be a permutation matrix.

Suppose that PB =

0

@
3 4 7
1 1 2
2 2 5

1

A. Find P .
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X However, in this case P is NOT considered an “elementary matrix”, since this
permutation is NOT simply swapping two rows one time.

Remark: Multiply two or more permutation matrices, we obtain another per-
mutation matrix. EX. If P1, P2 are permutation matrices, so is P1P2.

§ The permuted LU factorization

Every nonsingular matrix A can be reduced to upper triangular matrix by
applying elementary row operator of type 1 and type 2:

Fact 1. A is square matrix. The following are equivalent:

1. A is nonsingular.

2. A has a permuted LU factorization: PA = LU .

* If matrix A is regular, then permutation matrix P above is simply identity
matrix (P = I) since we do not need to do any row switchings.

Next we illustrate the general method to construct LU factorization

of a matrix A by doing the following example:
We will systematically build L, U and P .
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Example 4. Find LU factorization of the matrix

A =

0

BBB@

1 3 1 2
2 6 3 �3

�2 �6 �2 1
1 2 1 3

1

CCCA

Remark: When A is not regular, performing 2nd type of elementary row opera-
tion (permuting rows) indeed can give: PA is regular (has all nonzero pivot).
Then we can find its LU factorization, namely,

PA = LU
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