Lecture 3: Quick review from previous lecture

- We have learned how to use Gaussian elimination to solve a linear system $A \mathbf{x}=\mathbf{b}$ when A is regular, that means that a matrix only has nonzero pivots. (adding/substuasting "one row toffrom other row)
- We have shown that such regular matrix A can be factored as

$$
A=L U,
$$

where U is upper triangular and L is lower triangular.
Furthermore, L has 1's on its main diagonal, and U has non-zerd elements on its main diagonal (the pivots of A).

Today we will

- continue discuss Sec. 1.3 Gaussian Elimination
- discuss Sec. 1.4 Pivoting and Permutations
- Lecture will be recorded -
- The first homework is due this Friday $(1 / 29)$ at 6 pm .

Example 4: Find $L U$ factorization of the matrix

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
1 & -2 & 1 \\
(4)-5 & 3 \\
1 & 4 & -2
\end{array}\right), L=I_{3} . \\
& \left.\begin{array}{l}
A \xlongequal{(2)-40}\left(\begin{array}{ccc}
01 & -2 & 1 \\
0 & (3) & -1 \\
1 & 4 & -2
\end{array}\right), L=E_{1}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
-4 & 1 & 0
\end{array}\right) \\
0
\end{array}\right), \quad \text { pint } \\
& E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{(3)-(1)}\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 3 & -1 \\
0 & 6 & -3
\end{array}\right), \quad L=E_{1}^{-1} E_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \\
& E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-11 & 0 & 1
\end{array}\right) \\
& \xrightarrow{(3)-2(2)}\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 3 & -1 \\
0 & 0 & -1
\end{array}\right)=U, L=E_{1}^{-1} E_{2}^{-1} E_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 2 & 1
\end{array}\right) . \\
& E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)
\end{aligned}
$$

Then $A=L U$.

NTE that A is regular if
§ Use "LU factorization" to solve a linear system $A \mathrm{x}=\mathrm{b}$.
We do this by solving 2 linear systems:

$$
A x=b . \Rightarrow L L_{y} \Psi_{x}=b .
$$

$1^{\text {st }}$ system: $L y=b$. Solve for y by using forward

$$
\left[\begin{array}{c}
10 \\
\cdots=-1
\end{array}\right][y]=[b]
$$

$2^{\text {nd }}$ system $=\Delta x=y$. Solve for x by using" back substiturar?
Example 5: Consider the same matrix A as in Example 4,

$$
A=\left(\begin{array}{rrr}
1 & -2 & 1 \\
4 & -5 & 3 \\
1 & 4 & -2
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
6 \\
3
\end{array}\right)
$$

Solve $A \mathbf{x}=\mathbf{b}$ by using LU factorization.
1.

$$
\begin{aligned}
& L y=b \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
6 \\
3
\end{array}\right]}
\end{aligned}
$$

(1) $y_{1}=1$; (2) $4+y_{2}=6 \Rightarrow y_{2}=2$

$$
\text { (3) } 1+2(2)+y_{3}=3 \Rightarrow y_{3}=-2
$$

2. $\bigsqcup x=y$

$$
\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 3 & -1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]
$$

(3) $x_{3}=2$.

MATH 4242-W $3 x_{2}-x_{3}=2 x_{3} \Rightarrow x_{2}=4 / 3$
1.4 Pivoting and Permutations

From the following example, we will learn how to handle the situation, where some pivot of the matrix A is zero when we perform Gaussian Elimination.
Example 1. Solve the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 2 \\
1 & 3 & 1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
4 \\
5
\end{array}\right)
$$

$$
(A \mid b)=\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
2 & 4 & 2 & 4 \\
(1) & 3 & 1 & 5
\end{array}\right)
$$

A is NT regular A is nonsingular.

$$
\xrightarrow[(3)-(1)]{(2)-2(1)}\left(\begin{array}{rrr|r}
1 & 2 & 3 & 1 \\
0 & 0 & -4 & 2 \\
0 & 1 & -2 & 4
\end{array}\right)
$$

upper triangular form.
By back subritution, we can solve x, y, z,

The operation of permuting two rows of the matrix (or equivalently permuting the order of equations), is called pivoting.

From now on,
when we refer to "Elementary Row Operation": It includes

- the $1^{\text {st }}$ type of elementary row operation: add/subtracting a multiple of one row to/from another row
- the $2^{\text {nd }}$ type of elementary row operation: pivoting (smitch/permute).

Definition: We say that a square matrix is nonsingular if this matrix can be reduced to upper triangular form with all non-zero diagonal elements by using only

Remark: Every $\underbrace{\text { regular }}_{\text {no zero pivot }}$ square matrix A is nonsingular, but the converse implication is NOT true.

$$
\begin{array}{r}
E X=\operatorname{see} E \times 1, A \text { is monsingular, but } \\
\text { wo regular }
\end{array}
$$

Definition: A matrix that is not nonsingular is called singular.

Definition: A permutation matrix is a matrix obtained from the identity matrix I_{n} by any combination of row interchanges.

Example 2:
(1) Write down the 3 -by- 3 permutation matrix that swaps the order of rows 2 and 3.

$$
I_{3} \xrightarrow[\text { (2) (3) }]{\text { swap }}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=P .
$$

(2) Let $B=\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 5 \\ 3 & 4 & 7\end{array}\right)$
(a) $P B=\left(\begin{array}{lll}1 & 1 & 2 \\ 3 & 4 & 7 \\ 2 & 2 & 5\end{array}\right)$.
(b) Is B regular?

$$
B \xrightarrow[(3)-3(1)]{\text { Is } B \text { regular? }}\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 2 \\
0 & 1 & 1
\end{array}\right), B \text { is nit regular. }
$$

$P B$ is regular. $\Rightarrow P B=L U$

Example 3: Same matrix B as in Example 2. Let P be a permutation matrix.
Suppose that $P B=\left(\begin{array}{lll}3 & 4 & 7 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right)$. Find P.

$$
P_{13} P_{12}=\left(\begin{array}{lll}
2 & 5 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=P
$$

\checkmark However, in this case P is NOT considered an "elementary matrix", since this permutation is NOT simply swapping two rows one time.

Remark: Multiply two or more permutation matrices, we obtain another permutation matrix. EX. If P_{1}, P_{2} are permutation matrices, so is $P_{1} P_{2}$.

§ The permuted LU factorization

Every nonsingular matrix A can be reduced to upper triangular matrix by applying elementary row operator of type 1 and type 2 :

$(n \times n)$

Fact 1. A is ssquare matrix. The following are equivalent:

1. A is nonsingular.
2. A has a permuted $L U$ factorization: $P A=L U$., P

* If matrix A is regular, then permutation matrix P above is simply identity matrix $(P=I)$ since we do not need to do any row switchings. $A=L U$ $\stackrel{\downarrow}{ } I_{n}$

Next we illustrate the general method to construct LU factorization of a matrix A by doing the following example:
We will systematically build L, U and P.

Example 4. Find $L U$ factorization of the matrix

$$
\begin{aligned}
& A \xrightarrow[\substack{(3)+2(1) \\
(4)-(1)}]{\substack{(2)-2(1)}}\left(\begin{array}{cccc}
1 & 3 & 1 & 2 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 5 \\
0 & -1) & 0 & 1
\end{array}\right), L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), P=I_{4} \\
& \xrightarrow{(2) \leftrightarrow(4)}\left(\begin{array}{cccc}
1 & 3 & 1 & 2 \\
0 & -1 & 0 & 1 \\
0 & 0 & 0 & 5 \\
0 & 0 & 1 & -7
\end{array}\right), L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right), P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

$$
\xrightarrow{(3) \leftrightarrow-(4)}\left(\begin{array}{cccc}
1 & 3 & 1 & 2 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 5
\end{array}\right)=\square, L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
-2 & 0 & 0 & 1
\end{array}\right), P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

$$
\text { Then } P A=L J
$$

Remark: When A is not regular, performing $2^{\text {nd }}$ type of elementary row operaion (permuting rows) indeed can give: $P A$ is regular (has all nonzero pivot). Then we can find its $L U$ factorization, namely,

$$
P A=L U
$$

