Lecture 30: Quick review from previous lecture

- Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L[\mathbf{x}]=A \mathbf{x}$., $A_{m \times n}$. \mathbb{R}^{n} with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \quad \longrightarrow \quad \mathbb{R}^{m}$ with basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$

$$
\overrightarrow{\mathbf{x}},\left(x_{1}, \ldots, x_{n}\right)^{T} \quad L[\overrightarrow{\mathbf{x}}],\left(y_{1}, \ldots, y_{m}\right)^{T}
$$

Then

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\underbrace{T^{-1} A S}_{B}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right],
$$

where $T=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right]$ and $S=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$. The matrix representation of L in these bases is $\underline{B}=T^{-1} A S$.

Today we will discuss

- Section 8.2 Eigenvalues and eigenfunctions.
- Lecture will be recorded -
- HW 10 due next Monday at 6 pm .
- The solutions, statistic, and grade for Exam 2 were posted on Canvas.
- The University provides free peer tutor service, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

Chapter 8 Eigenvalues and Singular Values

We will discuss 8.2, 8.3, 8.5, and 8.7.

8.2 Eigenvalues and Eigenvectors

As we will see, eigenvectors are a natural basis for expressing the action of symmetric linear operators.

Definition: If $A=A_{n \times n}$ is a square matrix, we say that a scalar λ is an eigenvalue of A if there is a non-zerg vector $\mathbf{v} \neq \mathbf{0}$ satisfying

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

If λ is an eigenvalue, we say a vector $\mathbf{v} \neq \mathbf{0}$ satisfying $A \mathbf{v}=\lambda \mathbf{v}$ is an eigenvector.
*Important: The zero vector $\mathbf{0}$ is not allowed to be an eigenvector, by definiion.

Here the action of a matrix A on the eigenvector mimic scalar multiplication.

Properties:

1) In geometric terms, the eigenvectors of A are those vectors that are stretched or scaled by A. See also Lecture 29 Example 5 .
2) The eigenvalue λ is the amount by which the eigenvector \mathbf{v} is stretched.
3) Note that even though $\mathbf{v} \neq \mathbf{0}$, we may have $\boldsymbol{\lambda}=0$.
$A v=0 v, v \neq v$.

Goal:

$$
A \longrightarrow\left(\begin{array}{cccc}
* & 0 & \ldots & 0 \\
0 & * & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & *
\end{array}\right)
$$

§ How to find eigenvalues and eigenvectors.

Let's rewrite the equations $A \mathbf{v}=\lambda \mathbf{v}$ into

$$
\begin{equation*}
(A-\lambda I) \mathbf{v}=\underline{\mathbf{0}}, \quad \text { where } I \text { is the identity matrix. } \tag{1}
\end{equation*}
$$

Clearly, it is a homogeneous linear system, and thus $\mathbf{v}=\mathbf{0}$ is a solution of (1).
\mathbf{Q} : How to find its nonzero solutions (eigenvectors \mathbf{v})?

In other words, the eigenvectors \mathbf{v} with eigenvalue λ are the non-zero vectors in the kernel of $A-\lambda I$.

$$
0_{0}^{v} \in \operatorname{ker}(A-\lambda I) \text {. }
$$

Thus, we have the following fact.
Fact 1: A scalar λ is an eigenvalue of $n \times n$ matrix A if and only if $A-\lambda I$ is singular (
$\operatorname{rank}(A-\lambda I)<n$.
not muentible.

From Fact 1, we immediately have
Fact 2: A scalar λ is an eigenvalue of $n \times n$ matrix A if and only if λ is a solution to the characteristic equation
$\operatorname{det}(A-\lambda I)=0$.

Summary:

λ is an eigenvalue \Longleftrightarrow there is a nonzero vector \mathbf{v} so that $A \mathbf{v}-\lambda \mathbf{v}=0$ $\Longleftrightarrow A-\lambda I$ is singular $\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$.

We define characteristic polynomial of A by

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I), \quad \text { polynomial with } \operatorname{deg} r \text { if } n \text {. }
$$

the eigenvalues of A are the roots of $p_{A}(\lambda)$, i.e. the values λ at which $p_{A}(\lambda)=0$.

Example 1. Let $A=\left(\begin{array}{rr}1 & -1 \\ -2 & 0\end{array}\right)$. Find eigenvalues and eigenvectors.
(1) Set up $\operatorname{det}(A-\lambda I)=0$

$$
\begin{aligned}
0=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -1 \\
-2 & 0-\lambda
\end{array}\right) & =(1-\lambda)(-\lambda)-2 \\
& =\lambda^{2}-\lambda-2 \\
& =(\lambda-2)(\lambda+1)
\end{aligned}
$$

$\lambda=2,-1$ are eigenvalues.
(2) Find eigenvectors ($\left.\forall^{0} \in \operatorname{ker}(A-\lambda I)\right)$

$$
\begin{aligned}
\lambda=2
\end{aligned} \quad A-2 I=\left(\begin{array}{cc}
-1 & -1 \\
-2 & -2
\end{array}\right) \xrightarrow{(2)-20}\left(\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right) .
$$

Let $y=1, \quad v_{1}=\binom{-1}{1}$ eigenvector corresponding

$$
\begin{aligned}
& \lambda=-1: A+I=\left(\begin{array}{cc}
2 & -1 \\
-2 & 1
\end{array}\right) . \\
& V_{2}=\binom{1}{2} \text { eryenvectur corresponding } \lambda=2 .
\end{aligned}
$$

Remark: If \mathbf{v} is an eigenvector of A corresponding to the eigenvalue λ, then so is every nonzero scalar multiple of \mathbf{v}, that is,cvfor scalar $c \neq 0$

Example 2. Let $A=\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5\end{array}\right)$. Find its eigenvalues and eigenvectors.
(1) Set up $\frac{\operatorname{det}(A-\lambda I)=0}{(2-\lambda 00}$

$$
\begin{aligned}
& O=\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 5-\lambda & -1 \\
0 & -1 & 5-\lambda
\end{array}\right)=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
5-\lambda & -1 \\
-1 & 5-\lambda
\end{array}\right)+0+0 \\
&=(2-\lambda)\left[(5-\lambda)^{2}-1\right] \\
&=(2-\lambda)\left(\lambda^{2}-10 \lambda+24\right) \\
&=(2-\lambda)(\lambda-4)(\lambda-6) \\
&\left(\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 5-\lambda & -1 \\
0 & -1 & 5-\lambda
\end{array}\right) \xrightarrow{(3)+\frac{1}{5-\lambda}(2)}\left(\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 5-\lambda & -1 \\
0 & 0 & 5-\lambda-\frac{1}{5-\lambda}
\end{array}\right) \\
& \operatorname{det}(A-\lambda I)=(2-\lambda)(5-\lambda)\left(5-\lambda-\frac{1}{5-\lambda}\right) \\
&=(2-\lambda)(5-\lambda) \frac{\left((5-\lambda)^{2}-1\right)}{(5-\lambda)}
\end{aligned}
$$

$$
\lambda=6,4,2 \text { are eryenvalues. }
$$

(2) Find eigenvectors ($\sqrt{v} \in \operatorname{ker}(A-\lambda I)$).

$$
\left.\left.\begin{array}{rl}
\lambda=6 & : A-6 I \\
y & =-z ; \quad x=0 \\
& \operatorname{ker}(A-6 I)=\left\{\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right) \xrightarrow{(3)-(2)}\left(\begin{array}{ccc}
-4 & 0 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right) .\right. \\
-z \\
z
\end{array}\right) \mid z \in \mathbb{R}\right\} .
$$

Let $z=1, v_{1}=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$.

$$
\begin{gathered}
\lambda=4: A-4 I=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right) . \\
V_{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
\end{gathered}
$$

$$
\lambda=2: \quad v_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Fact 3: Matrix A is singular if and only if A has a zero eigenvalue.
[To see this:]
A is singular $(\operatorname{det} A=0) \Leftrightarrow \quad \operatorname{ker} A \neq\{0\}$

$$
\begin{aligned}
& \Leftrightarrow \quad o \not v V \in \operatorname{ker} A \\
& \Leftrightarrow A V=0=0 v
\end{aligned}
$$

$\Leftrightarrow 0$ is eigenvalue
\checkmark is eryenveruv.
Fact 4: A and A^{T} have the same eigenvalues.

* However, the eigenvectors do not need to be the same.
[To see this:] Characteristic equation for A :

$$
\begin{aligned}
0 & =\operatorname{det}(A-\lambda I) \quad 2 \text { since } \operatorname{det} B=\operatorname{det} B^{\top} \\
& =\operatorname{det}(A-\lambda I)^{\top} \\
& =\operatorname{det}\left(A^{\top}-\lambda I\right)
\end{aligned}
$$

characteristic equ. for A^{\top}.

§ Basic Properties of Eigenvalues.

Let A is a $n \times n$ square matrix. Recall that its characteristic polynomial

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=c_{n} \lambda^{n}+\cdots+c_{1} \lambda+c_{0}
$$

is a degree n polynomial, whose roots are the eigenvalues of A.
We can in principle factor p_{A} in the form

$$
p_{A}(\lambda)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) .
$$

We say that the eigenvalue λ_{j} has multiplicity k if it appears k times in the factorization of $p_{A}(\lambda)$.

Let's observe a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with eigenvalues λ_{1}, λ_{2}. Then

$$
\begin{aligned}
& p_{A}(\lambda)=\Gamma^{\operatorname{det}(A-\lambda I)}\left(\begin{array}{cc}
A-\lambda & b \\
c & d-\lambda
\end{array}\right)=\lambda^{2}-\underbrace{(a+d)}_{\text {tr A }} \lambda+\underbrace{(a d-b c}_{\text {detA }}) \text { the same. } \\
& p_{A}(\lambda)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\boldsymbol{\lambda}\right)=\lambda^{2}-\left(\lambda_{1}+\lambda_{2}\right) \lambda+\lambda_{1} \lambda_{2}
\end{aligned}
$$

Fact 5: The sum of all the eigenvalues equals the trace of $A=\left(a_{i j}\right)_{n \times n}$:

$$
\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}=\lambda_{1}+\cdots+\lambda_{n} .
$$

Furthermore, the product of all the eigenvalues equals the determinant of A :

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

Revisit Example 2. Let $A=\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5\end{array}\right)$. Check the following properties:

$$
\lambda=6,4,2
$$

(1) $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}=\underbrace{\sum_{i=1}^{n} \lambda_{i}}_{i=1}$.

$$
2+5+5=12-116+4+2=12 \text {. }
$$

(2) $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.

$$
\begin{aligned}
& \lambda_{1} A_{2} \lambda_{3}=6 \cdot 4 \cdot 2=6 \cdot 8=48 \\
& \operatorname{det} A=A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 5 & -1 \\
0 & -1 & 5
\end{array}\right) \xrightarrow{\text { (3)+1}+2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 5 & -1 \\
0 & 0 & 5+\left(-\frac{1}{5}\right)
\end{array}\right)
\end{aligned}
$$

Example 3. Let $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$. Check (1) $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}$.
(2) $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. $\operatorname{det} A=2 \cdot 5 \cdot\left(5-\frac{1}{5}\right)$

$$
=48
$$

(1)

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 . \\
& A-\lambda I=\left(\begin{array}{ccc}
3-\lambda & 1 & 0 \\
1 & 3-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right) \\
&=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right) \\
& \lambda=\frac{2}{n}, \underline{\text { mulepping }} \underline{2} .
\end{aligned}
$$

[T_{0} be continued !]

