Lecture 30: Quick review from previous lecture

• Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^m$, $L[\mathbf{x}] = A\mathbf{x}$. Amaxe. \mathbb{R}^n with basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\} \longrightarrow \mathbb{R}^m$ with basis $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ $\vec{\mathbf{x}}, (x_1, \dots, x_n)^T \qquad L[\vec{\mathbf{x}}], (y_1, \dots, y_m)^T$

Then

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \underbrace{T^{-1}AS}_B \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix},$$

where $T = [\mathbf{w}_1, \dots, \mathbf{w}_m]$ and $S = [\mathbf{v}_1, \dots, \mathbf{v}_n]$. The **matrix representa**tion of *L* in these bases is $B = T^{-1}AS$.

Today we will discuss

• Section 8.2 Eigenvalues and eigenfunctions.

- Lecture will be recorded -

- HW 10 due today at 6pm. next Monday at 6pm.
- The solutions, statistic, and grade for Exam 2 were posted on Canvas.
- The University provides free **peer tutor service**, which can be found in https://www.lib.umn.edu/smart (SMART Learning Commons)

Chapter 8 Eigenvalues and Singular Values

We will discuss 8.2, 8.3, 8.5, and 8.7.

8.2 Eigenvalues and Eigenvectors

As we will see, eigenvectors are a natural basis for expressing the action of symmetric linear operators.

Definition: If $A = A_{n \times n}$ is a square matrix, we say that a scalar λ is an **eigenvalue** of A if there is a non-zero vector $\mathbf{v} \neq \mathbf{0}$ satisfying $\mathbf{A} = \mathbf{A} \cdot \mathbf{A}$

$$A\mathbf{v} = \lambda \mathbf{v}$$

If λ is an eigenvalue, we say a vector $\mathbf{v} \neq \mathbf{0}$ satisfying $A\mathbf{v} = \lambda \mathbf{v}$ is an **eigen-vector**.

*Important: The zero vector **0** is **not** allowed to be an eigenvector, by definition.

Here the action of a matrix A on the eigenvector mimic scalar multiplication.

Properties:

- 1) In geometric terms, the eigenvectors of A are those vectors that are stretched or scaled by A. See also Lecture 29 Example 5.
- 2) The eigenvalue λ is the amount by which the eigenvector **v** is stretched.

3) Note that even though $\mathbf{v} \neq \mathbf{0}$, we may have $\lambda = 0$.

Av= ov, v=

Goal:

$$A \longrightarrow \begin{pmatrix} * & 0 & \dots & 0 \\ 0 & * & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & * \end{pmatrix}$$

From Fact 1, we immediately have

Fact 2: A scalar λ is an eigenvalue of $n \times n$ matrix A if and only if λ is a solution to the **characteristic equation**

 $\det(A - \lambda I) = 0.$

Summary:

 λ is an eigenvalue \iff there is a nonzero vector \mathbf{v} so that $A\mathbf{v} - \lambda\mathbf{v} = 0$ $\iff A - \lambda I$ is singular $\iff \det(A - \lambda I) = 0.$ We define **characteristic polynomial of** A by

 $p_A(\lambda) = \det(A - \lambda I),$ polynomial with degree in the eigenvalues of A are the **roots** of $p_A(\lambda)$, i.e. the values λ at which $p_A(\lambda) = 0$.

Example 1. Let $A = \begin{pmatrix} 1 & -1 \\ -2 & 0 \end{pmatrix}$. Find eigenvalues and eigenvectors. () Set up det $(\hat{A} - \lambda I) = O$ $0 = det \begin{pmatrix} 1-n & -1 \\ -2 & 0-n \end{pmatrix} = (1-n)(-n) - 2$ $= \pi^2 (-) \pi (-2)$ $= (\lambda - 2)(\lambda + 1)$ n=2,-1 are eigenvalues. Find eigenvectors ("eker(A-AI)) $\underline{\lambda = 2} : A - 2I = \begin{pmatrix} -1 & -1 \\ -2 & -2 \end{pmatrix} \stackrel{\textcircled{l}}{\longrightarrow} \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}$ x = -y. $ker(A-2I) = \begin{cases} \begin{pmatrix} -y \\ y \end{pmatrix} & \notin R \end{cases}$ Let y = 1, $V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ eigenvector corresponding to 1=2. $\underline{\lambda} = -1 : A + I = \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix}$ V2 = (2) ergenvector corresponding To AF-1 **Remark**: If **v** is an eigenvector of A corresponding to the eigenvalue λ , then so is every nonzero scalar multiple of **v**, that is, $c\mathbf{v}$ for scalar $c \neq 0$.

Example 2. Let
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & -5 \end{pmatrix}$$
. Find its eigenvalues and eigenvectors.
(1) Set up $\det(A - \pi I) = O$
 $O = \det(\begin{pmatrix} 2-\pi & 0 & 0 \\ 0 & 5-\pi & -1 \\ 0 & -1 & T-\pi \end{pmatrix} = (2-\pi)\det(\begin{pmatrix} 5-\pi & -1 \\ -1 & 5-\pi \end{pmatrix}) + O + O$
 $= (2-\pi)(\pi^{2} - 1) = (2-\pi)(\pi^$

Fact 3: Matrix A is singular if and only if A has a zero eigenvalue.

[To see this:] is singular (der A=0) (=) ker A = {0} (=) ofvekerA $\langle \Rightarrow A v = 0 = 0 v$ (=) O is ergenvalue V is ergenvertur

Fact 4: A and A^T have the same eigenvalues. *However, the eigenvectors do not need to be the same.

[To see this:] Characteristic equation for A: $O = olot (A - \lambda I)$ $= det (A - \lambda I)^T$ Since der $B = det B^T$ $= det (A^T - \lambda I)$ $= det (A^T - \lambda I)$ $= det (A^T - \lambda I)$

§ Basic Properties of Eigenvalues.

Let A is a $n \times n$ square matrix. Recall that its **characteristic polynomial**

$$p_A(\lambda) = \det(A - \lambda I) = c_n \lambda^n + \dots + c_1 \lambda + c_0$$

is a degree n polynomial, whose roots are the **eigenvalues** of A. We can in principle factor p_A in the form

Fact 5: The sum of all the eigenvalues equals the trace of
$$A = (a_{ij})_{n \times n}$$
:

$$trA = \sum_{i=1}^{n} a_{ii} = \lambda_1 + \dots + \lambda_n.$$

Furthermore, the product of all the eigenvalues equals the determinant of A:

$$\mathsf{det} A = \prod_{i=1}^n \lambda_i = \lambda_1 \lambda_2 \cdots \lambda_n.$$

Revisit Example 2. Let
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5 \end{pmatrix}$$
. Check the following properties:
(1) $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$;
 $2 + 5 + 5 = 12$
(2) $\operatorname{det} A = \lambda_1 \lambda_2 \cdots \lambda_n$.
 $\Lambda_1 \quad \Lambda_2 \quad \Lambda_3 = 6 \cdot 4 \cdot 2 = 68 = 42$
 $\operatorname{det} A \stackrel{\circ}{=} A = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 3 & 2 \end{pmatrix} \stackrel{\circ}{=} \begin{pmatrix} 2 & 0 & -1 \\ -1 & 2 & -1 \end{pmatrix}$
Example 3. Let $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Check (1) $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$.
(2) $\operatorname{det} A = \lambda_1 \lambda_2 \cdots \lambda_n$.
(2) $\operatorname{det} (A - \Lambda I) = 0$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 2 - \Lambda \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 $A - \Lambda I = \begin{pmatrix} 3 & -\Lambda & 1 & 0 \\ -1 & 3 - \Lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$