Lecture 31: Quick review from previousplocture
Let $A=\left(a_{i j}\right)$ be $n \times n$ matrix.

- If λ is an eigenvalue of A, then there exists a vector $\mathbf{v} \neq \mathbf{0}$ satisfying $A \mathbf{v}=\lambda \mathbf{v}$. We call \mathbf{v} is an eigenvector.
- λ is an eigenvalue of the matrix A if and only if λ is a solution to the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0 .
$$

have

- A and A^{T} have the same eigenvalues.
- $\underline{\operatorname{tr} A}=\sum_{i=1}^{n} a_{i i}=\underline{\lambda_{1}+\cdots+\lambda_{n}}$.
- $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & i \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) \quad \text { (1) } \operatorname{Tr} A=a_{11}+\cdots+a_{n n}
$$

(2) $\operatorname{det} A=\lambda, \cdots \lambda_{n}$.

Today we will discuss

- Section 8.3 Eigenvector Bases.
- Lecture will be recorded -

(2) $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.

Find eigenvalues : Set up $\operatorname{det}(A-\lambda I)=0$.

$$
\left.\begin{array}{rl}
0=\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left.\begin{array}{ccc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array} \right\rvert\,\right. \\
-2
\end{array}\right)
$$

Then $\lambda=2,2,4$
FF $\frac{\lambda=2}{\lambda=4}$ has multiplicity 2 . 1 ת
(1) $\operatorname{Tr} A=3+3+2=8$. $5^{\text {the }}$ same

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}=2+2+4=8
$$

(2) $\operatorname{det} A=\operatorname{det}\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$

$$
\begin{aligned}
=2 \operatorname{det}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) & =2 \cdot 8=16 \\
\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3}=2 \cdot 2-4 & =16
\end{aligned}
$$

when $\operatorname{det} A=\lambda_{1} \lambda_{2} \lambda_{3}$

Find eigenvectors: $\operatorname{ker}(A-\lambda I)$.

$$
\begin{aligned}
& \xrightarrow[\lambda=2]{\lambda}: A-2 I=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{Q-0}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \operatorname{ker}(A-2 I)=\left\{\begin{array}{c}
\left.\left.\left(\begin{array}{c}
-y \\
y \\
z
\end{array}\right)\right|_{z=1, z=0} y, z \in \mathbb{R}\right\} \\
V_{1}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \quad V_{2}=\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right) \\
\underline{\lambda=4}= \\
V_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) . \nmid
\end{array}\right.
\end{aligned}
$$

§ Similar matrices
Definition: Let A and B be $n \times n$ square matrices. We say that B is similar to A if there exists an mertiblematrix S so that

$$
B=S^{-1} A S
$$

We actually saw this before.
Recall that a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L[\mathbf{x}]=A \mathbf{x}$. The matrix representation of L in the basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is

$$
B=S^{-1} A S, \quad \text { where } S=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]
$$

Fact 6: Let A and B be $n \times n$ square matrices. If B is similar to A, then $\operatorname{det}\left(A-\lambda_{I}\right), \operatorname{det}(B-\lambda I)$
(1) A and B share the same Characteristic polynomial and eigenvalues.
(2) Moreover, if $B \mathbf{w}=\mu \mathbf{w}$ and μ is then eigenvalue of B, then $S \mathbf{w}$ is an eigenvector of A with eigenvalue μ.
Similarly, if $A \mathbf{v}=\lambda \mathbf{v}$ and λ is the eigenvalue of A, then $S^{-1} \mathbf{v}$ is an eigenvector of B with eigenvalue λ.
[To see this:]

$$
\begin{aligned}
& \text { ce this:] } \\
& \text { (1) } 0=\operatorname{det}(B-\lambda I)=\operatorname{det}\left(S^{-1} A S-\lambda I\right) \\
&=\operatorname{det}\left(S^{-1}(A I) S\right. \\
&\left.=\operatorname{det} S^{-1} \operatorname{det}(A-\lambda I)\right) S \\
&=\operatorname{det}(A-\lambda I)
\end{aligned}
$$

This implies A, B have the same eigenvalues

$$
\left.S^{-1} A S^{2}\right) B w=\mu w
$$

$$
\text { multiply } S \Rightarrow\left(S^{-1} A S\right) w=\mu \omega
$$

For example,
Example 4 . Let's consider

$$
\underbrace{\left(\begin{array}{rr}
1 & 2 \\
-1 & 4
\end{array}\right)}_{R}=S^{-1} A S, \quad \text { where } A=\left(\begin{array}{ll}
3 & 2 \\
0 & 2
\end{array}\right), \quad S=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

It is clear that B is similar to A.
The matrix B has eigenvalues 3 and 2 , with eigenvectors

$$
\mathbf{w}_{1}=(1,1)^{T}, \quad \mathbf{w}_{2}=(2,1)^{T} \quad(\text { check this! }) .
$$

Then Fact 6 implies that A also has eigenvalues 3 and 2, but has eigenvectors
$S \mathbf{w}_{1}=\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)\binom{1}{1}=\binom{1}{0}, \quad \begin{aligned} & S \mathbf{w}_{2}=\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)\binom{2}{1}=\binom{2}{-1} \\ & \\ & \text { eigenvectus-of } \boldsymbol{A} .\end{aligned}$
8.3 Eigenvector Bases

Fact 1: Eigenvectors corresponding to different eigenvalues are linearly independent.

More generally, if $\lambda_{1}, \ldots, \lambda_{k}$ are pairwise distinct eigenvalues of A, then the corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent.

$$
\begin{aligned}
\lambda_{1} \pm \lambda_{2}, A v_{1} & =\lambda_{1} v_{1}(1) \\
A v_{2} & =\lambda_{2} v_{2} \text { (2) }
\end{aligned}
$$

Claim: v_{1}, v_{2} are l. indep.
By contradiction argument, suppose v_{1}, v_{2} are l dep.

Then $\lambda_{1}=\lambda_{2}$. (impossible).
So, v_{1}, v_{2} are ℓ indep

Thus, from the above Fact 1, we can derive that
Fact 2: If $n \times n$ real matrix A has n distinct real eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, then their corresponding real eigenvectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n}.
(Fact I gives v_{1}, \ldots, u_{n} au $\begin{aligned} & \text { dep. })\end{aligned}$

Definition: We say that an eigenvalue λ of a matrix A is complete if the number of linearly independent eigenvectors with eigenvalue λ is equal to the multiplicity of λ.

Definition: If A is a matrix with eigenvalue λ, we define the eigenspace of λ to be

$$
V_{\lambda}=\operatorname{ker}(A-\lambda I)
$$

Then
$\operatorname{dim} V_{\lambda} \quad$ (number of free variables)
$=$ number of linearly indent. eigenvectors of A with eigenvalue λ.

If $\operatorname{dim} V_{\lambda}=$ the multiplicity of λ, then λ is complete.
Example 1.
(1) $A=\left(\begin{array}{ll}c & 1 \\ 0 & c\end{array}\right) \quad 0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}c-\lambda & 1 \\ 0 & c-\lambda\end{array}\right)=(c-\lambda)^{2}$.
$\lambda=c, c($ multiplicity 2$)$.

$$
V_{\lambda}=\operatorname{ker}(A-c I)=\operatorname{ker}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left[\left.\binom{x}{0} \right\rvert\, x \in \mathbb{R}\right]
$$

$\operatorname{dim} \boldsymbol{V}_{\mathbf{c}}=1$. Then $\lambda=\left(\begin{array}{cc}c & 0 \\ 0 & c\end{array}\right)^{T s} \quad \sim$ complete.

$$
\lambda=C, C
$$

$$
\operatorname{ker}(B-c I)=\operatorname{ker}\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left\{\binom{x}{y}|x, y \in \mathbb{R}|\right.
$$

$\operatorname{dim} V_{c}=2$. Then $\lambda=c$ is complete.
B is complete
Definition: If all eigenvalues of A are complete, we say the matrix A itself is a complete matrix.

§ Diagonalization.

Goal:

$$
A \longrightarrow\left(\begin{array}{cccc}
* & 0 & \ldots & 0 \\
0 & * & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & *
\end{array}\right)
$$

Consider the linear operator $L[\mathbf{v}]=A \mathbf{v}$. Suppose matrix A is complete. Then A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and their corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ forms a basis of \mathbb{R}^{n}

$$
\left.\begin{array}{l}
A v_{j}=\lambda_{j} v_{j}, 1 \leq j \leq n . \\
A\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} & v_{1} & \cdots
\end{array} \lambda_{n} v_{n}\right.
\end{array}\right]=\left[\begin{array}{ll}
v_{1} \ldots v_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
0 & & \\
0 & \lambda_{n}
\end{array}\right]
$$

From above, we have shown that we can factor any complete matrix A :
Fact 3: Suppose matrix A is complete. Then

$$
A=V D V^{-1}
$$

where $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is the matrix of eigenvectors, and

$$
D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

\checkmark In other words, matrix representation of the operator $L[\mathbf{v}]=A \mathbf{v}$ in the basis of A 's eigenvectors gives a diagonal matrix D. (that is, $D=V^{-1} A V$.)

Definition: We say that the matrix A is diagonalizable, meaning it can be factored in the form

$$
A=V D V^{-1}, \quad \text { where } D \text { is diagonal and } V \text { is nonsingular. }
$$

