Lecture 33: Quick review from previous lecture

- The matrix A is **diagonalizable** if it can be factored in the form
 \[A = V D V^{-1} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}^\top \]

 where D is **diagonal** and V is **nonsingular**.

- A matrix is **complete** if and only if it is diagonalizable.

Today we will

- Section 8.5 Eigenvalues of **Symmetric** Matrices.

 - Lecture will be recorded -

- HW 11 due Today at 6pm.
8.5 Eigenvalues of Symmetric Matrices

Let’s focus on the theory of eigenvalues and eigenvectors for symmetric matrices, which have many nice properties.

Recall the example again.

Example 1. \(A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \). In Lecture 31, we have found

\[
\begin{align*}
\langle v_1, v_2 \rangle &= 0 \\
\langle v_2, v_3 \rangle &= 0 \\
\langle v_1, v_3 \rangle &= 0
\end{align*}
\]

eigenvalue \(\lambda = 2, 2 \) \ eigenvectors \(v_1 = (-1, 1, 0)^T \), \(v_2 = (0, 0, 1)^T \),
eigenvalue \(\lambda = 4 \) \ eigenvector \(v_3 = (1, 1, 0)^T \).

Thus, the matrix \(A \) is complete. Moreover,

\[
A = VDV^{-1},
\]

where \(D = \text{diag}(2, 2, 4) \) and \(V = [v_1, v_2, v_3] \).

- These eigenvectors \(v_1, v_2, v_3 \) are **mutually orthogonal**!
- The eigenvalues of \(A \) are **real numbers**, not complex.

Recall: \(Av_1 = \lambda_1 v_1 \), \(Av_2 = \lambda_2 v_2 \) \(\implies \langle v_1, v_2 \rangle \perp \) \(\text{indep} \).

Now if \(A = A^T \) then \(\langle v_1, v_2 \rangle \perp \) \(v_1, v_2 \) are **orthogonal**.

These facts are explained by the following Theorem.

Fact 1: Let \(A = A^T \) be a **real symmetric** \(n \times n \) matrix. Then

1. All the eigenvalues of \(A \) are **real**.
2. Eigenvectors corresponding to **distinct** eigenvalues are **orthogonal**.
3. There is an **orthonormal basis** of \(\mathbb{R}^n \) consisting of \(n \) eigenvectors of \(A \).

In particular, all **real symmetric** matrices are **complete** and **real diagonalizable**.

* Orthogonality is with respect to the standard dot product on \(\mathbb{R}^n \).
 Its proof can be found in the textbook.
Suppose A is **real and symmetric**, and let $\lambda_1, \ldots, \lambda_n$ denote its eigenvalues. Then the above Theorem tells us we can choose eigenvectors

$$u_1, \ldots, u_n$$

(so $Au_i = \lambda_i u_i$) that are **orthonormal**.

If $Q = [u_1, \ldots, u_n]$ and $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$, then

$$A [u_1 \ldots u_n] = [Au_1 \ldots Au_n] = [\lambda_1 u_1 \ldots \lambda_n u_n]$$

$$= [u_1 \ldots u_n] \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

Thus, we conclude that

$$A = QDQ^{-1} = QDQ^T.$$

Fact 2: (The Spectral Theorem) Let $A = A^T$ be a real symmetric $n \times n$ matrix. Then there exists an orthogonal matrix Q such that

$$A = QDQ^{-1} = QDQ^T, \quad \text{(spectral factorization)}$$

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal of D, while the columns of Q are the corresponding orthonormal eigenvectors.

* The term “spectrum” refers to the eigenvalues of a matrix.

Example 2. Find the **spectral factorization** of $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

[Answer:] From **Example 1**, we have seen $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ has “orthogonal” eigenvectors

$$v_1 = (-1, 1, 0)^T, \; v_2 = (0, 0, 1)^T, \; v_3 = (1, 1, 0)^T.$$

$$\text{diagonalize } A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^T.$$

Normalize v_1, v_2, v_3:

$$v_1 = \frac{v_1}{||v_1||} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \; v_2 = (0, 0, 1)^T, \; v_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$
Spectral factorization:

$$A = \begin{bmatrix} 8_1 & 9_2 & 9_3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 9_1 & 9_2 & 9_3 \end{bmatrix}^T$$

Q is orthogonal matrix ($Q^T = Q^{-1}$).

Recall:

We denote $K > 0$ if K is positive definite.

1. $K = K^T$
2. $x^T K x > 0$ if $x \neq 0$
§ Revisit Positive definite matrix. Suppose K is positive definite (in particular, symmetric). Let u_1, \ldots, u_n denote the orthonormal eigenvector basis, with eigenvalues $\lambda_1, \ldots, \lambda_n$ for matrix K. (By Fact 2) $K u_j = \lambda_j u_j$.

Fact 3: A symmetric matrix K is positive definite if and only if all of its eigenvalues are strictly positive, that is, $\lambda_j > 0$

[To see this:]

(\Rightarrow) Since $K > 0$, $x^T K x > 0$ if $x \neq 0, x \in \mathbb{R}^n$.

$$0 < u_j^T K u_j = u_j^T \lambda_j u_j = \lambda_j (u_j^T u_j)$$

$$= \lambda_j \cdot \text{since } \|u_j\|^2 = 1$$

(\Leftarrow) Claim: $x^T K x > 0$ for all $x \in \mathbb{R}^n$.

Since $\{u_1, \ldots, u_n\}$ is O.N.B, we can write

$$x = c_1 u_1 + \cdots + c_n u_n.$$

$$x^T K x = (c_1 u_1 + \cdots + c_n u_n)^T K (c_1 u_1 + \cdots + c_n u_n)$$

\[\{ u_j \} \text{ O.N.B.} \]

1. $\|u_j\| = 1$
2. $\langle u_j, u_i \rangle = 0$ for $j \neq i$.

\Rightarrow since $\lambda_j > 0$, c_1, \ldots, c_n are not all zero.

Remark: The same proof shows that K is positive semidefinite if and only if all its eigenvalues $\lambda \geq 0$.

\[\{ x^T K x \geq 0 \} \text{ if and only if } \lambda \geq 0. \]
Example 3. Determine if $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5 \end{pmatrix}$ is positive definite.

[Answer:]

1. Method 1: In Lec. 30, A has eigenvalues 2, 4, 6. By Fact 3, since $A^T = A$ has positive eigenvalue, we have $A > 0$.

2. Method 2: To see if a matrix is positive definite, one can also perform the Gaussian elimination (See in Lecture 19):

Proof. From Gaussian elimination, we have

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & 0 & 24/5 \end{pmatrix}. $$

Since all diagonal entries are positive, we confirm that A is positive definite.

Fact 4: If $A = A^T$ is symmetric, suppose u_1, \ldots, u_n are the orthonormal eigenvectors. Suppose u_1, \ldots, u_r all have non-zero eigenvalues, but u_{r+1}, \ldots, u_n have eigenvalue 0 (i.e. they’re in ker A). Consequently, u_1, \ldots, u_r are orthogonal to ker A, and hence

u_1, \ldots, u_r form an orthonormal basis for coimg $A = \text{img} A$.

Moreover, one has

u_{r+1}, \ldots, u_n form an orthonormal basis for ker $A = \text{coker} A$.
Example 4. Let \(A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \). Use Fact 4 to find an orthonormal basis for \(\text{coimg } A \) and \(\text{img } A \).

1. **Find eigenvalues:** \(0 = \det(A - \lambda I) \Rightarrow \lambda = 3, 2, 0 \).

2. **Find eigenvectors:**
 - \(\lambda = 3 \): \(A - 3I = \begin{pmatrix} -2 & -1 & 0 \\ -1 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \). \(\text{ker}(A - 3I) \) has a basis \(v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \).
 - \(\lambda = 2 \): \(A - 2I = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \). \(\text{ker}(A - 2I) \) has a basis \(v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \).
 - \(\lambda = 0 \): \(v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \).

\{ v_1, v_2, v_3 \} are orthogonal, but not yet orthonormal.

- Normalize \(g_i = \frac{v_i}{\|v_i\|} \) to get \(\{ g_1, g_2, g_3 \} \) is orthonormal.

\[A^* = A^T \]

Fact 4: \(\{ g_1, g_2, g_3 \} \) is O.N.B. for \(\text{img } A \), \(\text{coimg } A \).

Spectral factorization: \(A = \begin{pmatrix} g_1 & g_2 & g_3 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} g_1 & g_2 & g_3 \end{pmatrix} \)