Lecture 33: Quick review from previous lecture

• The matrix A is **diagonalizable** if it can be factored in the form

 $A = VDV^{-1} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \ddots & \lambda_n \\ \ddots & \lambda_n \end{bmatrix} \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \ddots & \lambda_n \\ \ddots & \lambda_n \end{bmatrix} \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}$ where *D* is diagonal and *V* is nonsingular. $\lambda_j := e_{ij}e_$

Today we will

• Section 8.5 Eigenvalues of Symmetric Matrices.

- Lecture will be recorded -

• HW 11 due Today at 6pm.

8.5 Eigenvalues of Symmetric Matrices

Let's focus on the theory of eigenvalues and eigenvectors for **symmetric matri-ces**, which have many nice properties.

Recall the example again.

Example 1.
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. In Lecture 31, we have found
 $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{0}$
 $\langle \mathbf{v}_1, \mathbf{v}_3 \rangle = \mathbf{0}$
eigenvalue $\lambda = 2, \mathbf{2}$ eigenvectors $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$,
eigenvalue $\lambda = 4$, eigenvector $\mathbf{v}_3 = (1, 1, 0)^T$.

Thus, the matrix A is complete. Moreover,

$$A = VDV^{-1},$$

where D = diag(2, 2, 4) and $V = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3].$

- These eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are mutually orthogonal!
- The eigenvalues of A are real numbers, not complex.

Recall:
$$Av_1 = \lambda_1 v_1$$

 $Av_2 = \lambda_2 v_2$ Renamply
 $N_1 \neq \lambda_2$ Now if $A = A^T$
 $Mov if A = A^T$
then Iv_1, v_2 areThese facts are explained by the following Theorem.then Iv_1, v_2 are

Fact 1: Let $A = A^T$ be a real symmetric $n \times n$ matrix. Then

- 1. All the eigenvalues of A are real.
- 2. Eigenvectors corresponding to **distinct** eigenvalues are orthogonal.
- 3. There is an orthonormal basis of \mathbb{R}^n consisting of *n* eigenvectors of *A*.

In particular, all real symmetric matrices are complete and real diagonalizable.

* Orthogonality is with respect to the standard dot product on \mathbb{R}^n . Its proof can be found in the textbook. orthug mal

Suppose A is **real and symmetric**, and let $\lambda_1, \ldots, \lambda_n$ denote its eigenvalues. Then the above Theorem tells us we can choose eigenvectors

$$\underbrace{\mathbf{u}_{1}, \dots, \mathbf{u}_{n}}_{1} \text{ (so } A\mathbf{u}_{i} = \underline{\lambda}_{i}\mathbf{u}_{i} \text{) that are orthonormal.}$$
If $Q = [\mathbf{u}_{1}, \dots, \mathbf{u}_{n}]$ and $D = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})$, then
$$\begin{bmatrix} Q & is & \underline{orthogonol} & \underline{watr}\lambda \\ Q^{T}Q &= \mathbf{I} = QQ^{T} \Rightarrow Q^{T} = Q^{T} \\ Q^{T}Q &= \mathbf{I} = QQ^{T} \Rightarrow Q^{T} = Q^{T} \\ A \begin{bmatrix} u_{1} & \cdots & u_{n} \end{bmatrix} = \begin{bmatrix} Au_{1} & \cdots & Au_{n} \end{bmatrix} = \begin{bmatrix} A, u_{1} & \cdots & Au_{n} \end{bmatrix} = \begin{bmatrix} A, u_{1} & \cdots & Au_{n} \end{bmatrix} \\ = \begin{bmatrix} u_{1}, \cdots & u_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1}, u_{1} & \cdots & \lambda_{n} & u_{n} \end{bmatrix} \\ A = Q D \begin{bmatrix} Q^{-1} \\ Q^{-1} \end{bmatrix} = Q D \begin{bmatrix} Q^{-1} \\ Q^{-1} \end{bmatrix} = \begin{bmatrix} orthogonl \end{bmatrix} \begin{bmatrix} orthogonl \end{bmatrix} \begin{bmatrix} orthogonl \end{bmatrix}$$
Thus, we conclude that
$$\underbrace{A = Q D \begin{bmatrix} Q^{-1} \\ Q^{-1} \end{bmatrix} = Q D \begin{bmatrix} Q^{T} \\ Q^{T} \end{bmatrix} = \begin{bmatrix} orthogonl \end{bmatrix} \begin{bmatrix} orthogonl \end{bmatrix} \begin{bmatrix} orthogonl \end{bmatrix}$$

Fact 2: (The Spectral Theorem) Let $A = A^T$ be a real symmetric $n \times n$ matrix. Then there exists an orthogonal matrix Q such that

$$A = QDQ^{-1} = QDQ^{T}, \qquad (\text{spectral factorization})$$

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal of D, while the columns of Q are the corresponding orthonormal eigenvectors.

* The term "spectrum" refers to the eigenvalues of a matrix.

Example 2. Find the spectral factorization of $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. [Answer:] From Example 1, we have seen $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ has "orthogonal" eigenvectors $\mathbf{A} = \mathbf{2}$ $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (0, 0, 1)^T$, $\mathbf{v}_3 = (1, 1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$, $\mathbf{v}_2 = (-1, 0)^T$, $\mathbf{v}_3 = (-1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$. $\mathbf{v}_2 = (-1, 1, 0)^T$, $\mathbf{v}_3 = (-1, 0)^T$. $\mathbf{v}_1 = (-1, 1, 0)^T$. $\mathbf{v}_2 = (-1, 1, 0)^T$.

spectral tactorization: $A = \begin{bmatrix} 2 & 2 & 9 \\ 9 & 9 & 3 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 9 & 9 & 9 \\ 0 & 0 & 0 \end{bmatrix}$ Q is orthogonal matrix $(Q^T = Q^{-1})$

Recall: We denote K>D. it Kis positive definite.

§ Revisit Positive definite matrix. Suppose K is positive definite (in particular, symmetric). Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ denote the orthonormal eigenvector basis, with eigenvalues $\lambda_1, \ldots, \lambda_n$ for matrix K. (B, Fact 2), K $u_1 = \lambda_1 u_1$. Fact 3: A symmetric matrix K is positive definite if and only if all of its eigenvalues are strictly positive, that is, $\lambda_j > 0$ [To see this:] (\Longrightarrow) Since K > 0, $x^T K x > 0$ if $x \neq 0$, $x \in \mathbb{R}^n$. $O < u_j^T K u_j = u_j^T \lambda_j u_j = \lambda_j (u_j^T u_j)$ $= \eta_{1}$. Since $\|u_{j}\|^{2} = 1$ (() Claim: x K x > 0 tor all x × e R (" Since [U, ..., un] is O.N.B, we can unte $X = C_1 U_1 + \dots + C_n U_n.$ $X^{T}K_{X} = (C_{1} u_{1} + \dots + C_{n} u_{n})^{T} K(C_{1} u_{1} + \dots + C_{n} u_{n})$ = $(C_1 u_1 + \dots + C_n u_n) (G_1 \overline{A_1} u_1 + \dots + C_n \overline{A_n} u_n)$ $\{u_{j}\} O N.B. = c_{1} \pi_{1} u_{1} u_{j} + \cdots + c_{n} \pi_{n} u_{n} u_{n}$ $0 ||u_{1}|| = 1$ $= C_{1}^{2} \lambda_{1} + - - + C_{2}^{2} \lambda_{3}$ $\Theta < u_{1}, u_{1} > = 0$ $i \neq j > 0$ since $n_{ij} > 0$, $C_{i,..., C_n}$ are not all zero . A =) K >0 . # **Remark:** The same proof shows that K is positive semidefinite if and only if all its eigenvalues $\lambda \geq 0$. $K \geq 0$ XTKX20 MATH 4242-Week 13-3 Spring 2021

K= K

Example 3. Determine if $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5 \end{pmatrix}$ is positive definite.

[Answer:]

- 1. Method 1: In Lec. 30, A has eigenvalues 2,4,6. By Fact 3, since $A^{T} = A$ has positive eigenvalue , we have A > 0. #
- 2. Method 2: **To see if a matrix is positive definite**, one can also perform the Gaussian elimination (See in Lecture 19):

Proof. From Gaussian elimination, we have P^{100} $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5 \end{pmatrix} - - - - \longrightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & 0 & 24/5 \end{pmatrix}.$

Since all diagonal entries are positive, we confirm that A is positive definite.

Fact 4: If $A = A^T$ is symmetric, suppose $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are the orthonormal eigenvectors. Suppose $\mathbf{u}_1, \ldots, \mathbf{u}_r$ all have non-zero eigenvalues, but $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_n$ have eigenvalue 0 (i.e. they're in ker A). Consequently, $\mathbf{u}_1, \ldots, \mathbf{u}_r$ are orthogonal to ker A, and hence

$$\mathbf{u}_{1}, \dots, \mathbf{u}_{r} \text{ form an orthonormal basis for coimg } A = \operatorname{img} A.$$
Moreover, one has
$$\mathbf{u}_{r+1}, \dots, \mathbf{u}_{n} \text{ form an orthonormal basis for } \ker A = \operatorname{coker} A.$$

$$\lambda_{r+1}, \dots, \lambda_{n} \text{ form an orthonormal basis for } \ker A = \operatorname{coker} A.$$

$$\lambda_{r+1}, \dots, \lambda_{n} \text{ form an orthonormal basis for } \ker A = \operatorname{coker} A.$$

$$\lambda_{r+1}, \dots, \lambda_{n} \text{ form an orthonormal basis for } \ker A = \operatorname{coker} A.$$

$$Au_{r+1} = 0u_{r+1}, \lambda_{r+1}, \dots, \lambda_{n} \text{ form an orthonormal basis for } \sum_{s \in S} \sum_{s$$