Lecture 33: Quick review from previous lecture

- The matrix A is diagonalizable if it can be factored in the form

$$
A=V D V^{-1}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{lll}
u_{1} & \cdots u_{n}
\end{array}\right]^{-1}
$$

where D is diagonal and V is nonsingular.

$$
\lambda_{j}=\text { eigenvalues }
$$

- A matrix is complete if and only if it is diagonalizable \boldsymbol{u}_{j} : eigenvectors.

$$
=[\quad]\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

Today we will

- Section 8.5 Eigenvalues of Symmetric Matrices.
- Lecture will be recorded -
- WW 11 due Today at bpm.

8.5 Eigenvalues of Symmetric Matrices

Let's focus on the theory of eigenvalues and eigenvectors for symmetric matrices, which have many nice properties.

Recall the example again.
Example 1. $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$. In Lecture 31, we have found $\begin{array}{r}\left\langle v_{1}, v_{2}\right\rangle=0 \\ \left\langle v_{1}, v_{3}\right\rangle=0\end{array} \quad\left\langle v_{2}, v_{3}\right\rangle=0$
eigenvalue $\lambda=2,2 \quad$ eigenvectors $\mathbf{v}_{1}=(-1,1,0)^{T}, \quad \mathbf{v}_{2}=(0,0,1)^{T}$, eigenvalue $\lambda=4, \quad$ eigenvector $\mathbf{v}_{3}=(1,1,0)^{T}$.

Thus, the matrix A is complete. Moreover,

$$
A=V D V^{-1}
$$

where $D=\operatorname{diag}(2,2,4)$ and $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$.

- These eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are mutually orthogonal!
- The eigenvalues of A are real numbers, not complex.

$$
\text { Recall: } \begin{aligned}
& A v_{1}=\lambda_{1} v_{1} \\
& A v_{2}=\lambda_{2} v_{2}
\end{aligned}, \lambda_{1} \ddagger \lambda_{2} \stackrel{\text { Peavnoly }}{\Longrightarrow}\left|v_{1}, v_{2}\right| l \text {. indep. Now if } A=A^{\top} \text {, }
$$

These facts are explained by the following Theorem.
Fact 1: Let $A=A^{T}$ be a real symmetric $n \times n$ matrix. Then

1. All the eigenvalues of A are real.
2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.
3. There is an orthonormal basis of \mathbb{R}^{n} consisting of n eigenvectors of A.

In particular, all real symmetric matrices are complete and real diagonalizable.

* Orthogonality is with respect to the standard dot product on \mathbb{R}^{n}. Its proof can be found in the textbook.

Suppose A is real and symmetric, and let $\lambda_{1}, \ldots, \lambda_{n}$ denote its eigenvalues. Then the above Theorem tells us we can choose eigenvectors
$\underline{\mathbf{u}_{1}}, \ldots, \underline{\mathbf{u}_{n}} \quad\left(\right.$ so $\left.A \mathbf{u}_{i}=\underline{\lambda_{i}} \mathbf{u}_{i}\right)$ that are orthonormal.
If $Q=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right]$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then $\left\{\begin{array}{l}Q \text { is orthogonal matron } . \\ Q^{\top} Q=I=Q Q^{\top} \Rightarrow Q^{-1}=Q^{\top}\end{array}\right.$

$$
\begin{aligned}
& A\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]=\left[\begin{array}{lll}
A u_{1} & \cdots & A u_{n}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} u_{1} & \ldots & \lambda_{n} \\
u_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
u_{1} & Q & \\
u_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
0 & \ddots & \\
& D & \lambda_{n}
\end{array}\right] \\
& A=Q D Q^{-1}=Q D Q^{\top}=\left[\begin{array}{l}
\text { orthoganil }
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right][\text { orthogonal }]^{-1} \\
& \text { Thus, we conclude that }
\end{aligned}
$$

Fact 2: (The Spectral Theorem) Let $A=A^{T}$ be a real symmetric $n \times n$ matrix. Then there exists an orthogonal matrix Q such that

$$
A=Q D Q^{-1}=Q D Q^{T}, \quad \text { (spectral factorization) }
$$

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal of D, while the columns of Q are the corresponding orthonormal eigenvectors.

* The term "spectrum" refers to the eigenvalues of a matrix.

Example 2. Find the spectral factorization of $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$.
[Answer:] From Example 1, we have seen $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$ has "orthogonal" eigenvectors

$$
\begin{array}{ccc}
\boldsymbol{\lambda}=\mathbf{2} & \mathbf{2} & \mathbf{4} \\
\mathbf{v}_{1}=(-1,1,0)^{T}, & \mathbf{v}_{2}=(0,0,1)^{T}, & \mathbf{v}_{3}=(1,1,0)^{T} .
\end{array}
$$

Previously, $\begin{gathered}\text { diagonalize } A\end{gathered} A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]^{-1}$
Normalize $V_{1} \quad v_{2} \quad v_{3}$:

$$
\text { MATH } 4242-\text { Week } 1 q_{0}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right), q_{2}^{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), q_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) .
$$

spectral factorization:

$$
\begin{aligned}
& A=\underbrace{\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]^{\top}}_{\text {is orthogonal matrix } \quad\left(Q^{\top}=Q^{-1}\right)} . .
\end{aligned}
$$

Recall:
\S Revisit Positive definite matrix. Suppose K is positive definite (in particular, symmetric). Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ denote the orthonormal eigenvector basis, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ for matrix K. (By Fact 2), $K \boldsymbol{u}_{\boldsymbol{j}}=\boldsymbol{\lambda}_{\boldsymbol{j}} \boldsymbol{u}_{\boldsymbol{j}}$.
Fact 3: A symmetric matrix K is positive definite if and only if all of its eigenvalues are strictly positive, that is, $\lambda_{j}>0$
[To see this:]
(\Rightarrow) Since $K>0, x^{\top} K x>0$ if $x \neq 0, x \in \mathbb{R}^{\eta}$.

$$
0<u_{j}^{\top} K u_{j}=u_{j}^{\top} \lambda_{j} u_{j}=\lambda_{j}\left(u_{j}^{\top} u_{j}\right)
$$

(\Leftarrow) Claim: $x^{\top} K x>0$ for all ${ }_{0} x^{x} \in \mathbb{R}^{n}$

$$
=\lambda_{j} \text {. since }\left\|u_{j}\right\|^{2}=1
$$

since $\left\{u_{1}, \ldots, u_{n}\right\}$ is O.N.B, we can write

Remark: The same proof shows that K is positive semidefinite if and only if all its eigenvalues $\lambda \geq 0$.

$$
K \geq 0 \Leftrightarrow \lambda \geq 0 .
$$

$$
{ }^{4}\left\{\begin{array}{l}
x^{\top} K x \geq 0 \\
k^{\top}=16
\end{array}\right.
$$

$$
\begin{aligned}
& x=c_{1} u_{1}+\cdots+c_{n} u_{n} . \\
& x^{\top} K x=\left(c_{1} u_{1}+\ldots+c_{n} u_{n}\right)^{\top} K\left(c_{1} u_{1}+2+c_{n} u_{n}\right) \\
& \left.\begin{array}{l}
\left\{u_{j}\right\} \text { ON.B. } \ell=\left(c_{1} u_{1}+\ldots+c_{n} u_{n}\right)^{\top}\left(c_{1} \lambda_{1} u_{1}+\cdots+c_{n} \lambda_{n} u_{n}\right) \\
\text { (1) }\left\|u_{j}\right\|=1
\end{array} c_{1}^{2} \lambda_{1} u_{1}^{\top} u_{1}\right)^{1}+\cdots+c_{n}^{2} \lambda_{n} u_{n}^{\top} u_{n} 1 \\
& \text { (2) }\left\langle u_{j}, u_{i}\right\rangle=0=c_{1}^{2} \lambda_{1}+\cdots+c_{n}^{2} \lambda_{n} \\
& \text { ito }>0 \text { since } \pi_{\bar{V}}>0, c_{1, \ldots}, c_{n} \text { are } \\
& \Rightarrow K>0 . \neq \text { not all zero. 仅 }
\end{aligned}
$$

Example 3. Determine if $A=\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & -1 & 5\end{array}\right)$ is positive definite.
[Answer:]

1. Method 1: In Lec.30, A has eigenvalues 2, 4,6. By Fact 3 , since $A^{\top}=A$ has positive eigenvalue
, we have $A>0$. A
2. Method 2: To see if a matrix is positive definite, one can also perform the Gaussian elimination (See in Lecture 19):
Proof. From Gaussian elimination, we have , pinots

$$
A=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & 5 & -1 \\
0 & -1 & 5
\end{array}\right)---\longrightarrow\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & 5 & -1 \\
0 & 0 & 24 / 5
\end{array}\right)
$$

Since all diagonal entries are positive, we confirm that A is positive definite.

Fact 4: If $A=A^{T}$ is symmetric, suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are the orthonormal eigenvectors. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ all have non-zero eigenvalues, but $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n}$ have eigenvalue 0 (ie. they're in ger A). Consequently, $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are orthogonal to ger A, and hence

$\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ form an orthonormal basis for coimg $A=\operatorname{img} A$.

Moreover, one has
$\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n}$ form an orthonormal basis for $\operatorname{ker} A=\operatorname{coker} A$. $\lambda_{1}, \ldots, \lambda_{r}^{x_{0}^{0}} \longrightarrow\left\{u_{1} \ldots, u_{r}\right\} \operatorname{ing} A=\operatorname{coing} A$
$A u_{r+1}=0 u_{r+1} \lambda_{r_{+1}}: 0, \ldots, \lambda_{n}=0 \longrightarrow$
MATH 4242-Week 13-3 5

$$
=O, \Rightarrow u_{r+1} \in \operatorname{ker} A
$$

basis for coimg A and $\operatorname{img} A$.
(1) Find eigenvalues: $0=\operatorname{det}(A-\lambda I) \Rightarrow \lambda=3,2,0$.
(2) Find eigen vectors:

$$
\lambda=3: \quad A-3 I=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
-1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right) \text {. } \operatorname{ker}(A-3 I) \text { has }
$$

a basis $v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

$$
\begin{gathered}
\begin{array}{l}
\lambda=2: A-2 I=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \text {. ken }(A-22) \text { has } \\
\text { a basis } v_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \\
\underline{\lambda=0}=V_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) .
\end{array} .
\end{gathered}
$$

$\left\{v_{1}, v_{2}, v_{3}\right\}$ ace orthogonal, but NT yet $\xrightarrow{\text { normalize }} \underset{\Longrightarrow}{\Longrightarrow} q_{j}=\stackrel{v_{j}}{\left|v_{j}\right| 1},\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) \stackrel{\text { orthonormal } 1}{=}$
$\xrightarrow{\text { Fact } 4}\left\{q_{1}, \varepsilon_{2}\right\}$ is $O . N, B$ for $\operatorname{ing} A, \operatorname{coing} A$.
spectral factorization: ${ }^{6} A=\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{ll}\text { spring } 2021 \\ q_{1} & q_{2} \\ q_{3}\end{array}\right]^{\top}$

