
Lecture 33: Quick review from previous lecture

The matrix A is diagonalizable if it can be factored in the form

A = V DV �1

where D is diagonal and V is nonsingular.

A matrix is complete if and only if it is diagonalizable.

—————————————————————————————————
Today we will

Section 8.5 Eigenvalues of Symmetric Matrices.

- Lecture will be recorded -

—————————————————————————————————

HW 11 due Today at 6pm.
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8.5 Eigenvalues of Symmetric Matrices

Let’s focus on the theory of eigenvalues and eigenvectors for symmetric matri-

ces, which have many nice properties.
Recall the example again.

Example 1. A =

0

@
3 1 0
1 3 0
0 0 2

1

A . In Lecture 31, we have found

eigenvalue � = 2, eigenvectors v1 = (�1, 1, 0)T , v2 = (0, 0, 1)T ,

eigenvalue � = 4, eigenvector v3 = (1, 1, 0)T .

Thus, the matrix A is complete. Moreover,

A = V DV �1,

where D = diag(2, 2, 4) and V = [v1,v2,v3].

These eigenvectors v1,v2,v3 are mutually orthogonal!

The eigenvalues of A are real numbers, not complex.

These facts are explained by the following Theorem.

Fact 1: Let A = AT be a real symmetric n⇥ n matrix. Then

1. All the eigenvalues of A are real.

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. There is an orthonormal basis of Rn consisting of n eigenvectors of A.

In particular, all real symmetric matrices are complete and real diagonalizable.

* Orthogonality is with respect to the standard dot product on Rn.
Its proof can be found in the textbook.
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Suppose A is real and symmetric, and let �1, . . . ,�n denote its eigenvalues.
Then the above Theorem tells us we can choose eigenvectors

u1, . . . ,un (so Aui = �iui) that are orthonormal.

If Q = [u1, . . . ,un] and D = diag(�1, . . . ,�n), then

Thus, we conclude that

Fact 2: (The Spectral Theorem) Let A = AT be a real symmetric n⇥ n
matrix. Then there exists an orthogonal matrix Q such that

A = QDQ�1 = QDQT, (spectral factorization)

where D is a real diagonal matrix. The eigenvalues of A appear on the diagonal
of D, while the columns of Q are the corresponding orthonormal eigenvectors.

* The term “spectrum” refers to the eigenvalues of a matrix.

Example 2. Find the spectral factorization of A =

0

@
3 1 0
1 3 0
0 0 2

1

A .

[Answer:] From Example 1, we have seen A =

0

@
3 1 0
1 3 0
0 0 2

1

A has “orthogonal”

eigenvectors

v1 = (�1, 1, 0)T , v2 = (0, 0, 1)T , v3 = (1, 1, 0)T .
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Spectral factorization :
T

A = 19, 9.9371 ! I § ) (919293 )
\ /

.

Q B orthogonal matrix (QIQ")
.
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Revisit Positive definite matrix. Suppose K is positive definite (in par-
ticular, symmetric). Let u1, . . . ,un denote the orthonormal eigenvector basis, with
eigenvalues �1, . . . ,�n for matrix K.

Fact 3: A symmetric matrix K is positive definite if and only if all of its
eigenvalues are strictly positive, that is, �j > 0

[To see this:]

Remark: The same proof shows that K is positive semidefinite if and only if all
its eigenvalues � � 0.
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Example 3. Determine if A =

0

@
2 0 0
0 5 �1
0 �1 5

1

A is positive definite.

[Answer:]

1. Method 1:

2. Method 2: To see if a matrix is positive definite, one can also perform
the Gaussian elimination (See in Lecture 19):

Proof. From Gaussian elimination, we have

A =

0

@
2 0 0
0 5 �1
0 �1 5

1

A���� �!

0

@
2 0 0
0 5 �1
0 0 24/5

1

A .

Since all diagonal entries are positive, we confirm that A is positive defi-
nite.

Fact 4: If A = AT is symmetric, suppose u1, . . . ,un are the orthonormal
eigenvectors. Suppose u1, . . . ,ur all have non-zero eigenvalues, but ur+1, . . . ,un

have eigenvalue 0 (i.e. they’re in kerA). Consequently, u1, . . . ,ur are orthogonal
to kerA, and hence

u1, . . . ,ur form an orthonormal basis for coimgA = imgA.

Moreover, one has

ur+1, . . . ,un form an orthonormal basis for kerA = cokerA.
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Example 4. Let A =

0

@
1 �1 0

�1 1 0
0 0 3

1

A. Use Fact 4 to find an orthonormal

basis for coimgA and imgA.
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