Lecture 34: Quick review from previous lecture

$$
A \text { is complete } \Longrightarrow A=V D V^{-1}=V\left[\begin{array}{ll}
0 & 0
\end{array}\right] V^{-1}
$$ where D is diagonal and V is nonsingular.

A is a $n \times n$ real, symmetric matrix
\Longrightarrow there exists orthonormal eigenvector basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$
to eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
$\Longrightarrow A=Q D Q^{-1}=Q D Q^{T}$, (spectral factorization)
where $D=\operatorname{diag}\left(\underline{\lambda_{1}, \ldots, \lambda_{n}}\right)$ and $\underline{Q=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{n}\right] .}$
Q is orthogonal matron
$\left(Q^{-1}=Q^{\top}\right)$
Today we will

- Continue Section 8.5 Eigenvalues of Symmetric Matrices.
- Lecture will be recorded -

§ Some Geometric Observation.

In \mathbb{R}^{2}, the spectral factorization of a symmetric matrix A has a natural geometric interpretation.

$$
\langle u, v\rangle=0
$$

$$
\|u\|=1=\|v\|
$$

Suppose that A is a symmetric 2×2 matrix. Let \mathbf{u}, \mathbf{v} be the orthonormal eigenvector basis in \mathbb{R}^{2} with eigenvalues λ, μ.

$$
A u=\lambda u \text {. Spectral factorization of } A=A=\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right][u \sim]^{\top}
$$

$$
A v=\mu v
$$

ellipse.

The matrix A maps the unit circle in \mathbb{R}^{2} to the ellipse

$$
\left\{a \mathbf{u}+b \mathbf{v}: \frac{a^{2}}{\lambda^{2}}+\frac{b^{2}}{\mu^{2}}=1\right\}
$$

The principal directions of this ellipse are the eigenvectors \mathbf{u} and \mathbf{v}, and the principal stretches are the eigenvalues λ and μ.

Example 5. Consider the quadratic form

$$
\begin{aligned}
q(\mathbf{x}) & =3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}=\vec{x}^{\top} A \vec{x}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =a y_{1}^{2}+b_{1} y_{2}^{2}
\end{aligned}
$$

Using the spectral factorization to diagonalized this quadratic form.
$A=A^{\top}$. Find eigenvalues /eigenvectors of $A\left(A=Q D Q^{\top}\right)$.

$$
0=\operatorname{det}(A-\lambda I) \Rightarrow \lambda=4,2 .
$$

$\lambda=4: \operatorname{ker}(A-4 I)=\left(A-4 I=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]\right)$ has
a basis $v_{1}=\binom{1}{1} \xrightarrow{\text { normalize }} u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}\binom{1}{1}$
$\hat{n=2}: \operatorname{ken}(A-2 I)=\left(A-2 I=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)$ has
a basis $v_{2}=\binom{1}{-1} \xrightarrow{\text { normalize }} u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{\sqrt{2}}\binom{1}{-1}$
The spectral factor aton of A

$$
\begin{aligned}
& A=Q\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] Q^{\top}, Q=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \\
& \begin{aligned}
q(x)=x^{\top} A x & =x^{\top} Q\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] Q^{\top} x \\
& =y^{\top}\left[\begin{array}{ll}
4 & 0
\end{array}\right] y=Q^{\top} x
\end{aligned} \\
& =y^{\top}\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] y \\
& \text { ord. of } x \\
& =4 y_{1}^{2}+2 y_{2}^{2} \text {. } \\
& \text { in paris }\left\{u_{1}, u_{2}\right\} \text {. }
\end{aligned}
$$

Then q is diagonalized as $4 y_{1}{ }^{2}+2 y_{2}^{2}$.

RR: $q\left(\pm u_{1}\right)=u_{1}^{\top} Q\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right] Q u_{1}=4$.

$$
q_{14-1}\left(\pm u_{2}\right)=\ldots=2
$$

§ Optimization principles for eigenvalues of symmetric matrices

Recall: A $n \times n$ symmetric matrix A has real eigenvalues

$$
\lambda_{1} \geq \cdots \geq \lambda_{n}
$$

and has an orthonormal eigenvector basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. Its spectral factorization is

$$
A=Q D Q^{T} .
$$

Consider the associated quadratic form: for any $\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}=1$,

$$
q(\mathbf{x})=\underline{\langle A \mathbf{x}, \mathbf{x}\rangle}=\mathbf{x}^{T} A \mathbf{x} .
$$

$$
=x^{\top} Q D Q^{\top} x \quad y y=Q^{\top} x
$$

$$
=y^{\top} D y
$$

$$
=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

$$
\leq \lambda_{1} y_{1}^{2}+\lambda_{1} y_{2}^{2}+\cdots+\lambda_{1} y_{n}^{2} \text { 「oldHw= }
$$

$$
=\lambda_{1}\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) \quad Q \text { is orthogonal }
$$

$$
=\lambda_{1}
$$

$\|\alpha x\|_{2}=\|x\|_{2} \quad$,
On the other hand, $q(x)=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}{ }^{2}$
Thus, we have the result: $\geq \boldsymbol{\lambda}_{n}\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=\boldsymbol{\lambda}_{n}$.

$$
\lambda_{1} \geq \cdots \geq \lambda_{n}
$$

Then

$$
\begin{array}{cc}
\mathbf{x}^{\top} A \mathbf{x} \\
\lambda_{1}=\max \left\{\langle A \mathbf{A x}, \mathbf{x}\rangle:\|\mathbf{x}\|_{2}=1\right\}, & \lambda_{n}=\min \left\{\langle A \mathbf{x}, \mathbf{x}\rangle:\|\mathbf{x}\|_{2}=1\right\} .
\end{array}
$$

The maximal value is achieved when $\mathbf{x}= \pm \mathbf{u}_{1}$, the unit eigenvector associated with the largest eigenvalue $\lambda_{1} . \quad q\left(\pm u_{1}\right)=\boldsymbol{\lambda}_{1}$
The minimal value is achieved when $\mathbf{x}= \pm \mathbf{u}_{n}$, the unit eigenvector associated with the smallest eigenvalue λ_{n}.

$$
q\left(\pm u_{n}\right)=\lambda_{n}
$$

Example 6. Consider the matrix

$$
\begin{array}{l}\boldsymbol{\lambda}_{\mathbf{1}}=\mathbf{4} \\ \text { Find } \max \left\{\langle A \mathbf{x}, \mathbf{x}\rangle:\|\mathbf{x}\|_{2}=1\right\}\end{array} \quad A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right] .
$$

and $\min \left\{\langle A \mathbf{x}, \mathbf{x}\rangle, \quad \begin{array}{l}\boldsymbol{\lambda}_{\mathbf{2}}=2 .\end{array}\|\mathbf{x}\|_{2}=1\right\}$.
From EX 5, $q(x)=x^{\top} A x=\langle A x, x\rangle$. A has eigenvalues 4,2 .

8.7 Singular Values

While we've seen that eigenvectors and eigenvalues are powerful tools for understanding matrices and operators, they have limitations.

1. Only square matrices can have eigenvectors.
2. Not every matrix has a basis of eigenvectors (only complete/diagonalizable matrices do).
3. Even when a basis of eigenvectors exists, unless the matrix is symmetric, this basis will not be orthogonal.

§ Singular value decomposition (SVD)

We study the factorization of a non-square matrix. The technique is widely used in data analysis.

The key observation is that for any real matrix $A=A_{m \times n}$ (not necessarily square), the matrices

$$
A A^{T}, \quad A^{T} A
$$

are both real, symmetric matrices (of sizes m-by- m and n-by- n, respectively).

Let's start by reviewing some facts.
Fact 1: Let $A \in M_{m \times n}(m \times n$ real matrices $)$. Then the following are true. 1. $A^{T} A$ and $A A^{T}$ are symmetric.
2. $\operatorname{ker}\left(A^{T} A\right)=\operatorname{ker}(A)$.
3. $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

SVD decomposition.

Suppose that $A \in M_{m \times n}$ ($m \times n$ real matrices) with $\operatorname{rank}(A)$
Since $A^{T} A$ is symmetric, the Spectral theorem yields that there exist orthonormab eigenvectors $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ forming a basis of \mathbb{R}^{n} with respect to eigenvalues

Then

$$
\begin{aligned}
0 & =\lambda_{r+1} \longrightarrow v_{r+1} \quad \longrightarrow \quad{ }_{k e} \\
& \vdots
\end{aligned}
$$

ter A
and

$$
A^{T} A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}, \quad j=1, \ldots, r
$$

$$
A^{T} A \mathbf{v}_{k}=0, \quad k=r+1, \ldots, n
$$

Then we have
Fact 2: (We will show it later.)
(1) $\lambda_{1}, \ldots, \lambda_{r}>0$.
(2) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is orthonormal basis for coimg A and
$\left\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}$ is orthonormal basis for $\operatorname{ker} A$.
(3) $\left\{A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}\right\}$ are mutually orthogonal and, moreover,

$$
\left\{\frac{A \mathbf{v}_{1}}{\sqrt{\lambda_{1}}}, \ldots, \frac{A \mathbf{v}_{r}}{\sqrt{\lambda_{r}}}\right\} \quad \text { is orthonormal basis for } \operatorname{img} A
$$

Cense $\sigma_{i}=\sqrt{\pi_{i}}$, singular values.
$\underline{R e c a l l}=\frac{A v_{j}}{\sigma_{j}}=u_{j}$,

$$
\begin{aligned}
& 1 \leq j \leq r . \Rightarrow A v_{j}=\sigma_{j} u_{j}, 1 \leq j \leq n \\
&\left\{\begin{array}{l}
1 v_{j}
\end{array}=0, r+1 \leq j \leq n\right.
\end{aligned}
$$

- U, U orthogonal matrix since $\left\{u_{i} \mid\left\{v_{j}\right\}\right.$ are QN.B.
- $u_{j}=$ right" singular vector ;
$u_{i}=$ "lett"

Definition: The square roots of the eigenvalues λ_{j} of $A^{T} A$ are called the singular values $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}$ of an $m \times n$ matrix A. (that is, $\sigma_{j}=\sqrt{\lambda_{j}}$)

Poll Question 1: If 5 is an eigenvalue of a square matrix A, then $1 / 5$ is the eigenvalue of A^{-1}.
d) Yes
B) No

