
Lecture 36: Quick review from previous lecture

Full SVD for a matrix:
Let A be an m⇥ n matrix of rank r with the positive singular values

�1 � �2 � · · · � �r > 0 (�r+1 = . . . = �n = 0),

and let ⌃ be the m⇥ n matrix defined by

⌃ =

2

6666666664

�1 0 · · · 0 · · · 0
0 �2 · · · 0 · · · 0
... ... ... ... ...
0 0 · · · 0 · · · 0
0 0 0 �r · · · 0
... ... ... ... ...
0 · · · · · · 0 · · · 0

3

7777777775

m⇥n

Then there exist an m ⇥ m orthogonal matrix U and an n ⇥ n orthogonal
matrix V such that

A = U⌃V T .

—————————————————————————————————
Today we will

Continue Section 8.7 Singular Values

- Lecture will be recorded -

—————————————————————————————————

HW 12 due today at 6pm
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Data fitting: Least squares problems
The problem here is: How do we “almost” solve a system Ax = b?

For example, an experimenter collects data by taking measurements {(ti, bi)}:

b1, b2, . . . , bm at times t1, t2, . . . , tm, respectively.

Figure 1: Least squares approximation of data by a straight line.

Suppose we use a linear model b = x1t + x2 (x1, x2 to be determined) to make
a prediction so that the line b = x1t + x2 best fits the data collected.

One way is to minimize the error

E
def
=

mX

i=1

(bi � (x1ti + x2))
2 = kAx� bk2.

Here

b =

2

6664

b1
b2
...
bm

3

7775
, A =

2

6664

t1 1
t2 1
... ...
tm 1

3

7775
, x =


x1
x2

�
.

Unfortunately, the systemAx = b can NOT be solved in many cases.

In this scenario, we can try to find a x⇤ that

minimizes the error kAx� bk.

That means
kAx⇤ � bk  kAx� bk for all x 2 Rn.
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Definition: Suppose that A 2 Mm⇥n, b 2 Rm.

(1) The least squares problem is to find x⇤ 2 Rn for which that the error
kAx� bk is minimized.

(2) A vector x⇤ that minimizes kAx�bk is called the least squares solution.

The least square solution x⇤ will satisfy this equation

ATAx� ATb = 0, which is called the normal equation.

Fact 5: Suppose that A 2 Mm⇥n, b 2 Rm. If A has n linearly independent
columns (rank(A) = n), then the least square solution is

x⇤ = (ATA)�1ATb,

Example 2. Return to our experiment, suppose the collected data (ti, bi) are
(1, 2), (2, 3), (3, 5), (4, 7). Then

b =

2

6664

2
3
5
7

3

7775
, A =

2

6664

1 1
2 1
3 1
4 1

3

7775
.

Find the least squares solution x⇤.
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Solveig: ATA ✗ = Atb
.

It has n d. ihdep . columns , i. e-, rank(A) =n.

By fact 1
,
rank GTA) = ranks ) = n .

ATA is nxn matrix with rank In ⇒ ATA is invertible
.

⇒ (ATA )
"
exists

.

ATA ✗ = Atb ⇒ E- (ATA )
-'

Atb
. #

t, bi Tz bz -13 b} Ta
,
by

t '

A



.

Remark: The method above may also be applied to di↵erent models. For
example, if we consider a polynomial model b = x1t

2 + x2t + x3 (x1, x2, x3 to
be determined). Then Here

b =

2

6664

b1
b2
...
bm

3

7775
, A =

2

6664

t21 t1 1
t22 t2 1
... ... ...
t2m tm 1

3

7775
, x =

2

4
x1
x2
x3

3

5 .
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A has 2 l
. indep. columns . By fact 5

,

✗* = (ATA )
"

At b.

ATA - ( I ? ? ;) /¥ f) = 43° '° )10 4

A)
"

= ¥ ( 4 -10

-10 30 )
so

. ✗
*
= z÷ ( 4 -10

→ so )l ! ? 11%1=1%1
T#

=

This means linear model b= X.tt/z--l7t--
The error E- is 11A - bll?
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§ In general, when rank(A) = r  n, we use the “pseudoinverse” to find the least
square solution.

Definition: Let A be an m⇥ n matrix with rank(A) = r and nonzero singular
values �1 � . . . � �r and SVD

A = U⌃V T .

The pseudoinverse of A is the n⇥m matrix

A+ = V ⌃+UT .

Here

⌃+
ij =

⇢ 1
�i

if i = j  r

0 otherwise

Fact 6: Suppose that A 2 Mm⇥n and b 2 Rm. Then x⇤ = A+b is the least
squares solution to the linear system Ax = b.
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'

ifIXM MXI
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nxn

-

Chedi : ✗
*
= Atb satisfies the

"

Normal equation
"

:

(ATA)✗=A
① (ATA ) ✗

*
= CUEVTJYUEVT ) ✗

*

= ✓ [TU IVT ✗
*

= ✓ IT -2 VT ✗
*
= V /
"
"
' trio

.

-

×
?
"

×juTb
= v /
"
"

rio.no/IIUtb.--vfa--rro..o/o/UTb.
② Atb = VÉUT b. - g- -

Then ① = ②
. #



Fact 7: Suppose that A 2 Mm⇥n and b 2 Rm with rank(A) = n. Then

A+ = (ATA)�1AT,

which gives
x⇤ = A+b = (ATA)�1ATb.

Example 2. Consider the linear system
⇢

x + y � z = 1,
x + y � z = 0.

Find the best approximation to a solution having minimum norm, that is, find a
least squares solution to this system.
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Exercise : At = (ATA )
-'

At it rank (A) =n
.

i

b= (f) .
A=( ',

'.IT?/AlET--b.-I
Previously ,

we have found in EX /
.

D= U Evt= ( % A) (% : ;) /↳
% "↳
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if
.
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A+= ✓ It UT = V (% :o)

,×z

UT

The least squares solution is
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Revisit Matrix norm.
Frobenius norm and Natural Matrix norm.
Let’s consider kxk2 =

p
x21 + . . . + x2n.

The natural matrix norm of A is

kAk2 = max{kAuk2 : kuk2 = 1}.

The Frobenius norm of a matrix A = (aij) is defined by

kAkF =

vuut
mX

i=1

nX

j=1

a2ij =
q
tr(ATA)

Fact 8: Let A 2 Mm⇥n and Q is an orthogonal matrix. Then

kQAk2 = kAk2, kQAkF = kAkF .

[To see this]
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EI : D= / ! ! ;) .
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Tr /B) = $
, ,
+- - + bun :-/ B=(bij)

To be continued !


