Lecture 36: Quick review from previous lecture

- Full SVD for a matrix:

Let A be an $m \times n$ matrix of rank r with the positive singular values

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0 \quad\left(\sigma_{r+1}=\ldots=\sigma_{n}=0\right)
$$

and let Σ be the $m \times n$ matrix defined by

$$
\Sigma=\left[\begin{array}{cccccc}
\sigma_{1} & 0 & \cdots & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & 0 & \sigma_{r} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & \cdots & 0 & \cdots & 0
\end{array}\right]_{m \times n}
$$

Then there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

Today we will

- Continue Section 8.7 Singular Values
- Lecture will be recorded -
- HW 12 due today at 6 pm

§ Data fitting: Least squares problems

The problem here is: How do we "almost" solve a system $A \mathbf{x}=\mathbf{b}$?
For example, an experimenter collects data by taking measurements $\left\{\left(t_{i}, a_{i}\right)\right\}$:

$$
b_{1}, b_{2}, \ldots, b_{m} \quad \text { at times } t_{1}, t_{2}, \ldots, t_{m} \text {, respectively. }
$$

t

Figure 1: Least squares approximation of data by a straight line.

Suppose we use a linear model $b=x_{1} t+x_{2}\left(x_{1}, x_{2}\right.$ to be determined) to make a prediction so that the line $b=x_{1} t+x_{2}$ best fits the data collected.

One way is to minimize the error

$$
\|\vec{x}\|_{2}=\sqrt{x_{1}^{2}+1+x_{4}^{2}}
$$

Here

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right], \quad A=\left[\begin{array}{cc}
t_{1} & 1 \\
t_{2} & 1 \\
\vdots & \vdots \\
t_{m} & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] . \quad \tau_{\nu} \text { solve }
$$

Unfortunately, the system $A \mathbf{x}=\mathbf{b}$ can NOT be solved in many cases.
In this scenario, we can try to find a \mathbf{x}^{*} that

$$
\text { minimizes the error }\|A \mathbf{x}-\mathbf{b}\| \text {. }
$$

That means

$$
\left\|A \mathbf{x}^{*}-\mathbf{b}\right\| \leq\|A \mathbf{x}-\mathbf{b}\| \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

Definition: Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$.
(1) The least squares problem is to find $\mathbf{x}^{*} \in \mathbb{R}^{n}$ for which that the error $\|A \mathbf{x}-\mathbf{b}\|$ is minimized.
(2) A vector \mathbf{x}^{*} that minimizes $\|A \mathbf{x}-\mathbf{b}\|$ is called the least squares solution.

The least square solution \mathbf{x}^{*} will satisfy this equation

$$
A^{T} A \mathbf{x}-A^{T} \mathbf{b}=0, \quad \text { which is called the normal equation. }
$$

Solve $x: \quad A^{\top} A x=A^{\top} b$.

Fact 5: Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. If A has n linearly independent columns $(\operatorname{rank}(A)=n)$, then the least square solution is

$$
\mathbf{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

A has $n l$.indep. columns; ice, $\operatorname{rank}(A)=n$.
By F act $1, \operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A)=n$.
$A^{\top} A$ is $n \times n$ matrix with rank in $\Rightarrow A^{\top} A$ is invertible.

$$
A^{\top} A x=A^{\top} b \Rightarrow x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b \cdot\left(A^{\top} A\right)^{-1} \text { exists. }
$$

Example 2. Return to our experiment, suppose the collected data $\left(t_{i}, b_{i}\right)$ are $(1,2),(2,3),(3,5),(4,7)$. Then $t_{1} b_{1} \quad t_{2} \quad b_{2} \quad t_{3} \quad b_{3} \quad t_{4}, b_{4}$

$$
\mathbf{b}=\left[\begin{array}{l}
2 \\
3 \\
5 \\
7
\end{array}\right], \quad A=\left[\begin{array}{ll}
\mathrm{t} & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right] \cdot A x=\boldsymbol{b}
$$

Find the least squares solution x^{*}.

A has 2 l. indep columns. By Fact 5,

$$
\begin{aligned}
& x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b . \\
& A^{\top} A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)=\left(\begin{array}{ccc}
3 & 0 & 10 \\
10 & 4
\end{array}\right) \\
& \left(A^{\top} A\right)^{-1}=\frac{1}{20}\left(\begin{array}{cc}
4 & -10 \\
-10 & 30
\end{array}\right) \\
& \text { So, } \quad x^{*}=\frac{1}{20}\left(\begin{array}{cc}
4 & -10 \\
-10 & 30
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
5 \\
7
\end{array}\right)=\binom{1.7}{0}
\end{aligned}
$$

This means linear model $b=x_{1} t+x_{2}=1.7 t$ The error E is $\left\|A x^{*}-b\right\|_{2}^{2}$

$$
\begin{aligned}
& =\left\|\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right)\binom{1.7}{0}-\left(\begin{array}{l}
2 \\
3 \\
5 \\
7
\end{array}\right)\right\|_{2}^{2} \\
& =\left\|\left(\begin{array}{c}
0.3 \\
0.4 \\
0.1 \\
0.2
\end{array}\right)\right\|_{2}^{2}=(0.3)^{2}+(0.4)^{2}+0.1^{2} \\
& =0.3
\end{aligned}
$$

Remark: The method above may also be applied to different models. For example, if we consider a polynomial model $b=x_{1} t^{2}+x_{2} t+x_{3}\left(x_{1}, x_{2}, x_{3}\right.$ to be determined). Then Here

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right], \quad A=\left[\begin{array}{ccc}
t_{1}^{2} & t_{1} & 1 \\
t_{2}^{2} & t_{2} & 1 \\
\vdots & \vdots & \vdots \\
t_{m}^{2} & t_{m} & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

§ In general, when $\operatorname{rank}(A)=r \leq n$, we use the "pseudoinverse" to find the least square solution.

Definition: Let A be an $m \times n$ matrix with $\operatorname{rank}(A)=r$ and nonzero singular values $\sigma_{1} \geq \ldots \geq \sigma_{r}$ and SVD

Here

$$
A_{n \times m}^{+}=V \Sigma^{+} U^{T}=V\left[{ }^{1 / \sigma_{1}} \cdots v_{\sigma_{o_{0.0}}} \mid 0\right]_{n \times m} U^{T}
$$

Fact 6: Suppose that $A \in M_{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{x}^{*}=\underline{A^{+} \mathbf{b}}$ is the least squares solution to the linear system $A \mathbf{x}=\mathbf{b}$.

Check: $x^{*}=A^{+} b$ satisties the Normal equation:

$$
\left(A^{\top} A\right) x=A^{\top} b .
$$

(1)

$$
\text { (1) } \left.\begin{array}{rl}
\left(A^{\top} A\right) x^{*} & =\left(U \Sigma V^{\top}\right)^{\top}\left(U \Sigma V^{\top}\right) x^{*} \\
& =V \Sigma^{\top} U^{\top} U \Sigma V^{\top} x^{*} \\
& =V \Sigma^{\top} \Sigma^{I} V^{\top} x^{\pi}
\end{array}\right)=V\left[\begin{array}{lll}
\sigma_{1}^{2} & & \\
& \sigma_{v}^{2} & \\
& & a_{0}
\end{array}\right]_{n x n} V^{\top} x^{\top} V^{\top} \Sigma^{\top} U^{\top} b .
$$

Then (1)

$$
\begin{aligned}
& \text { The pseudoinverse of } A \text { is the } n \times m \text { matrix }
\end{aligned}
$$

Fact 7: Suppose that $A \in M_{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$ with $\operatorname{rank}(A)=n$. Then

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

which gives

$$
\begin{aligned}
& (\text { rank } A \leq n) \text { Fart } 6 \\
& \mathbf{x}^{*}=A^{+} \mathbf{b}=\overbrace{\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} .} .
\end{aligned}
$$

Exercise: $A^{+}=\left(A^{+} A\right)^{-1} A^{\top}$ if rank $(A)=n$.

Example ${ }^{\mathbf{3}} \boldsymbol{\mathcal { Z }}$. Consider the linear system

$$
\left\{\begin{array}{l}
x+y-z=1 \\
x+y-z=0
\end{array}\right.
$$

Find the best approximation to a solution having minimuly norm, that is, find a least squares solution to this system.

$$
b=\binom{1}{0} \cdot A=\left(\begin{array}{lll}
1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right) \cdot A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=b .
$$

Previously, we have found in Ex.

$$
\begin{aligned}
& A=U \sum V^{\top}=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{6} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{3} & -1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{6} & 1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right) . \\
& V^{\top}
\end{aligned}
$$

$$
A^{+}=V \Sigma^{+} U^{\top}=V\left(\begin{array}{cc}
\frac{1}{\sqrt{6}} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)_{3 \times 2} U^{\top}
$$

The least squares solution is

$$
\begin{aligned}
& x^{*}=A^{+} b=\frac{1}{6}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) . \\
& =\left\|A x^{*}-b\right\|_{6}^{2}=\left\|A\left(\begin{array}{c}
y_{6} \\
y_{6} \\
-y_{6}
\end{array}\right)-\binom{1}{0}\right\|_{2}^{2}=\frac{1}{2}
\end{aligned}
$$

§ Revisit Matrix norm.

$$
E x: D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 \\
0 & 3 & 3
\end{array}\right) .\|D\|_{2}=3
$$

Frobenius norm and Natural Matrix norm.
Let's consider $\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$.
$\operatorname{Tr}(B)=b_{1}+\cdots+b_{n n}+B=\left(b_{j}\right)$
The natural matrix norm of A is

$$
\|A\|_{2}=\max \left\{\|A \mathbf{u}\|_{2}:\|\mathbf{u}\|_{2}=1\right\} .
$$

The Frobenius norm of a matrix $A=\left(a_{i j}\right)$ is defined by

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}
$$

Fact 8: Let $A \in M_{m \times n}$ and Q is an orthogonal matrix. Then

$$
\|Q A\|_{2}=\|A\|_{2}, \quad\|Q A\|_{F}=\|A\|_{F}
$$

[To see this]
To be continued!

