
Lecture 37: Quick review from previous lecture

Let A be an m ⇥ n matrix with rank(A) = r and nonzero singular values

�1 � . . . � �r and SVD

A = U⌃V T .

The pseudoinverse of A is the n⇥m matrix

A+
= V ⌃

+UT .

Here

⌃
+
ij =

⇢ 1
�i

if i = j  r

0 otherwise

Suppose that A 2 Mm⇥n, b 2 Rm
. Then

x⇤
= A+b

is the least squares solution to the linear system Ax = b.

If A 2 Mm⇥n has n linearly independent columns (rank A = n), then

x⇤
= A+b = (ATA)�1ATb,

where

A+
= (ATA)�1AT.

—————————————————————————————————

Today we will

Continue Section 8.7 Singular Values

- Lecture will be recorded -

—————————————————————————————————

Exam 3: 5/3 (Monday) in lecture.

Practice Exam is on Canvas now.
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Revisit Matrix norm.
Frobenius norm and Natural Matrix norm.
Let’s consider kxk2 =

p
x21 + . . . + x2n.

The natural matrix norm of A is

kAk2 = max{kAuk2 : kuk2 = 1}.

The Frobenius norm of a matrix A = (aij) is defined by

kAkF =

vuut
mX

i=1

nX

j=1

a2ij =
q
tr(ATA)

Fact 8: Let A 2 Mm⇥n and Q is an orthogonal matrix. Then

kQAk2 = kAk2, kQAkF = kAkF .

[To see this]

MATH 4242-Week 15-1 2 Spring 2021

D= (f %)
,

11131k = I - 3- I =3

tr /B) = b, , + - - - +bun it B=(bij )
.

E- A=④É
HAVE =12-5-22%111
=rÉ+E

① ②
=HAQUE

÷÷;:÷:÷:÷:
"

①
11 All, = max { 11 Aull, : 11 Ulla =L )

= 11 Q A 112
.

② g, g , , , . . ay ,mm , +
11 QA 1¥ = fÉÉÉÑ

☐
since

=FÉÉ "dash
= Ita

,
- 112

= 11 AHF .



Then we have

Fact 9: (1) Let A 2 Mm⇥n (m ⇥ n real matrices) with rank(A) = r and has

positive singular values �1 � . . . � �r. Then

kAkF =

q
�2
1 + . . . + �2

r .

(2) In particular, if A is a real, symmetric matrix with eigenvalues �1, . . . ,�n.

Then

kAkF =

q
�2
1 + . . . + �2

n

[To see this]

Example 3. Let A =

0

@
1 �1 0

�1 1 0

0 0 3

1

A. Find kAkF .

Ans. Previously, we have found the eigenvalues of A to be 0, 2 and 3.
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Fact 10: (1) Let A 2 Mm⇥n (m ⇥ n real matrices) with rank(A) = r and has

positive singular values �1 � . . . � �r. Then

kAk2 = �1 (largest singular value).

(2) In particular, if A is a real, symmetric matrix with eigenvalues �1, . . . ,�n.

kAk2 = max
1in

|�i|

[To see this]

Example 4.

(1) Consider the same matrix as Example 3: A =

0

@
1 �1 0

�1 1 0

0 0 3

1

A has eigen-

values 0, 2 and 3. Then kAk2 =

(2) Also in Example 1:

A =


1 1 �1

1 1 �1

�
has singular value

p
6, 0, 0. Then kAk2 =
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Low rank approximations to a matrix.
Suppose we want to approximate a matrix A = Am⇥n with rank r by a matrix

B = Bm⇥n with rank k < r.

We want to find such B of rank k

“to minimize kA� B̃k among all m⇥ n matrix B̃ with rank k”

Recall a matrix A with rank r has full SVD as follows:

The best rank k approximation to A is

B = U⌃kV
T .

Fact 8: This matrix B minimizes the distance to A as measured by Frobenius

norm and operator norm:

kA� Bk2 = , kA� BkF = .
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Example 5. SupposeA is a 3⇥4 matrix and has positive singular values 2, 3, 8 and
corresponding right singular vectors v1,v2,v3 and left singular vectors u1,u2,u3,

respectively. Then

A = 8u1v
T
1 + 3u2v

T
2 + 2u3v

T
3 .

Find the best rank 1 approximation to A and then find kA�Bk2 and kA�BkF .
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Condition number
A very useful quantity for understanding the behavior of a matrix is its condition
number.

Definition: The condition number of a nonsingular n⇥ n matrix A (rank

A = n) is the ratio between its largest �1 and smallest singular values �n, namely,

(A) =
�1
�n

.

The condition number (A) measures the “sensitivity of operations” we perform

with A to changes in the input data.

In particular, if (A) is very large, then small changes in x can result in large

changes in Ax.

Fact 13: If A is n ⇥ n nonsingular matrix, then A and A�1
have the same

condition number.

Fact 14:
(A) = kAk2kA�1k2.
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Poll Question 1: Suppose n⇥ n matrix A has full SVD

A = UDV T , where U, V are orthogonal matrices and D is diagonal matrix.

Then which one of the following is the full SVD of AT

A) UDV T

B) V DUT
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