Lecture 37: Quick review from previous lecture

- Let A be an $m \times n$ matrix with $\operatorname{rank}(A)=r$ and nonzero singular values $\sigma_{1} \geq \ldots \geq \sigma_{r}$ and SVD

$$
A=U \Sigma V^{T}=\sqcup\left[\begin{array}{lllll}
\sigma_{1} & & & \\
& { }^{\prime} & \sigma_{\gamma_{0}} & \\
& & & \\
& & & \\
& & & \\
{ }_{m x n}
\end{array} \mathbf{V}^{\top}\right.
$$

The pseudoinverse of A is the $n \times m$ matrix

Here

$$
\begin{aligned}
& \quad A^{+}=V \Sigma^{+} U^{T}=V\left[\begin{array}{llll}
1 / \sigma_{1} & & & \\
& \ddots & & \\
& & 1 / \sigma_{r} & \\
& & & \\
& & & \\
& & & \\
& & & \\
\frac{1}{\sigma_{i}} & \text { if } i=j \leq m \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- Suppose that $A \in M_{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. Then

$$
\mathbf{x}^{*}=A^{+} \mathbf{b}
$$

is the least squares solution to the linear system $A \mathbf{x}=\mathbf{b}$.

- If $A \in M_{m \times n}$ has n linearly independent columns (rank $A=n$), then

$$
\mathbf{x}^{*}=A^{+} \mathbf{b}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

where

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T} .
$$

Today we will

- Continue Section 8.7 Singular Values

- Lecture will be recorded -

- Exam 3: 5/3 (Monday) in lecture. * 2 review sections on Wed. and Fri.
- Practice Exam is on Canvas now.
§ Revisit Matrix norm.

$$
D=\left(\begin{array}{cc}
1 & 0 \\
0 & -3
\end{array}\right),\|D\|_{2}=|-3|=3
$$

Frobenius norm and Natural Matrix norm.
Let's consider $\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}} . \quad \operatorname{tr}(B)=b_{11}+\cdots+b_{n n}$ if $B=\left(b_{i j}\right)$.
The natural matrix norm of A is

$$
\begin{aligned}
& \text { norm of } A \text { is } \\
& \|A\|_{2}=\max \left\{\|A \mathbf{u}\|_{2}:\|\mathbf{u}\|_{2}=1\right\} . \quad E x=A=\left(\left(\begin{array}{l}
a_{1} \\
3
\end{array}\binom{2}{4}^{u_{2}} .\right.\right.
\end{aligned}
$$

The Frobenius norm of a matrix $A=\left(a_{i j}\right)$ is defined by $\|A\|_{F}=\sqrt{1^{2}+3^{2}+2^{2}+4^{2}}$

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{T} A\right)} \quad=\sqrt{\left\|\vec{a}_{1}\right\|_{2}^{2}+\left\|\vec{a}_{2}\right\|_{2}^{2}}
$$

Fact 8: Let $A \in M_{m \times n}$ and Q is an orthogonal matrix. Then

$$
\|Q A\|_{2}=\|A\|_{2}
$$

(2)
[To see this] Old HF: Q orthogonal. Then $\|Q \times\|_{2}=\|x\|_{2}$.
(1)

$$
\begin{aligned}
\|A\|_{2} & =\max \left\{\|A u\|_{2}:\|u\|_{2}=1\right\} \\
& =\max \left\{\|Q A u\|_{2}:\|u\|_{2}=1\right\} \\
& =\|Q A\|_{2} .
\end{aligned}
$$

(2) If $A=\left[\vec{a}_{1}-\vec{a}_{n}\right]_{m \times n}$, then

$$
\begin{aligned}
\|Q A\|_{F} & =\sqrt{\left\|Q \vec{a}_{1}\right\|_{2}^{2}+\cdots+\left\|Q \vec{a}_{n}\right\|_{2}^{2}} \\
& =\sqrt{\left\|\vec{a}_{1}\right\|_{2}^{2}+\cdots+\left\|\vec{a}_{n}\right\|_{2}^{2}} \\
& =\|A\|_{F_{2}} .
\end{aligned}
$$

$$
=\left\|\vec{a}_{j}\right\|_{2}
$$

Then we have
Fact 9: (1) Let $A \in M_{m \times n}(m \times n$ real matrices) with $\operatorname{rank}(A)=r$ and has positive singular values $\sigma_{1} \geq \ldots \geq \sigma_{r}$. Then

$$
\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}}
$$

(2) In particular, if A is a real, symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then

$$
\|A\|_{F}=\sqrt{\lambda_{1}^{2}+\ldots+\lambda_{n}^{2}}
$$

$\begin{aligned} & \text { [To see this] } \\ & \text { (1) } \\ & S\end{aligned} \vee D=A=\Delta \Sigma V^{\top}$, where $\Sigma=\left[\begin{array}{lll}\sigma_{1} & & \\ & & \\ & \sigma_{r} & \\ & & \\ & & \\ & & \\ & & \\ \operatorname{mxn}\end{array}\right.$

$$
\|A\|_{F}=\left\|\sqcup \Sigma v^{\top}\right\|_{F} \stackrel{\text { Fart }}{=}\left\|\vec{\Sigma} V^{\top}\right\|_{F}=\|\vec{己}\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}
$$

(2) $A=A^{\top}$. By Fact 4, $\sigma_{i}=\left|\lambda_{i}\right|$.

$$
\text { By (1) } \quad\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}}=\sqrt{\lambda_{1}^{2}+\ldots+\lambda_{n}^{2}}
$$

Example 3. Let $A=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$. Find $\|A\|_{F}$.
Ans. Previously, we have found the eigenvalues of A to be 0,2 and 3 .

$$
\begin{aligned}
A=A^{\top}, \quad B y \quad F a c t q(2), \quad\|A\|_{F} & =\sqrt{0^{2}+2^{2}+3^{2}} \\
& =\sqrt{13} .
\end{aligned}
$$

Fact 10: (1) Let $A \in M_{m \times n}(m \times n$ real matrices) with $\operatorname{rank}(A)=r$ and has positive singular values $\sigma_{1} \geq \ldots \geq \sigma_{r}$. Then $\sigma_{i}=\sqrt{\pi_{i}}, \lambda_{i}$ eigemal of $A^{\top} A$
(2) In particular, if A is a real, symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

$$
\|A\|_{2}=\max _{1 \leq i \leq n}\left|\lambda_{i}\right| \quad A=A^{\top}, \quad \sigma_{i}=\left|\boldsymbol{\lambda}_{\mathbf{i}}\right| .
$$

[To see this] Like Fact 9,

$$
\begin{aligned}
\|A\|_{2}=\left\|\Delta V^{\top}\right\|_{2} & \stackrel{F a r t 8}{ }\left\|\sum\right\|_{2} \\
& =\max _{1 s i s \gamma} \sigma_{i} \\
& =\sigma_{1} \mathrm{ff} \text { (the largest one) }
\end{aligned}
$$

Example 4.
(1) Consider the same matrix as Example 3: $A=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$ has eigenvalues 0,2 and 3 . Then $\|A\|_{2}=3$

$$
A=A^{\top}, \quad \sigma_{i}=0,2,3 .
$$

(2) Also in Example 1:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right] \text { has singular value } \sqrt{6}, 0,0 \text {. Then }\|A\|_{2}=\sqrt{6} \\
& \|A\|_{F}=\sqrt{6},\left(B_{y} \text { Fact 9), or }\|A\|_{\mathcal{F}}=\sqrt{2\left(1^{2}+1^{2}+(-1)^{2}\right)}=\sqrt{\|_{5} \log _{2021}}\right.
\end{aligned}
$$

§ Low rank approximations to a matrix.
Suppose we want to approximate a matrix $A=A_{m \times n}$ with rank r by a matrix $B=B_{m \times n}$ with rank $k<r$.

We want to find such B of rank k
"to minimize $\|A-\tilde{B}\|$ among@ all $m \times n$ matrix (\hat{B}) with rank k "
Recall a matrix A with rank r has full SVD as follows:

$$
\begin{aligned}
& A=\Delta \vec{L} V^{\top}=\Delta\left[\begin{array}{lll}
\sigma_{1} & \ddots & \\
& & \sigma_{r} \\
& & \\
& & \ddots \cdot
\end{array}\right]_{m x_{n}} V^{\top}, \quad \sigma_{1} \geq \cdots \geq \sigma_{r}>0 . \\
& \text { Let } B=\Delta\left[\begin{array}{lllll}
\sigma_{1} & \ddots & & \\
& \sigma_{k} & & \\
& & \ddots_{1} & \\
& \Sigma_{k} & 0
\end{array}\right]_{m \times n} V^{\top}, \quad k<\gamma \text {. }
\end{aligned}
$$

Then $\operatorname{rank}(B)=k$.
The best rank k approximation to A is

$$
B=U \Sigma_{k} V^{T}
$$

Fact 8: This matrix B minimizes the distance to A as measured by Frobenius norm and operator norm:

has positive singular values $\frac{\sigma_{k+1}}{\text { largest one }}$
Then $\|A-B\|_{2}=\sigma_{k+1}$

$$
\|A-B\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{r}^{2}} .
$$

Example 5. Suppose A is a 3×4 matrix and has positive singular values and corresponding right singular vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and left singular vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$, respectively. Then

$$
A=8 \mathbf{u}_{1} \mathbf{v}_{1}^{T}+3 \mathbf{u}_{2} \mathbf{v}_{2}^{T}+2 \mathbf{u}_{3} \mathbf{v}_{3}^{T}
$$

Find the best rank 1 approximation to A and then find $\|A-B\|_{2}$ and $\|A-B\|_{F}$.

$$
A=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\top} \\
v_{2}^{\top} \\
v_{3}^{\top}
\end{array}\right] \text { (Reduced SUD) }
$$

The best rank 1 appro. is

$$
\begin{aligned}
B & =\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{lll}
8 & & \\
& 0 & \\
& & 0
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\top} \\
v_{2}^{\top} \\
v_{3}^{\top}
\end{array}\right] \\
& =8 u_{1} v_{1}^{\top}
\end{aligned}
$$

Then $A-B=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]\left[\begin{array}{lll}0 & & \\ & 3 & \\ & & 2\end{array}\right]\left[\begin{array}{l}v_{1} \top \\ v_{2} \top \\ v_{3}^{\top}\end{array}\right]$
$\|A-B\|_{2}=3$, largest sing uar value $\begin{aligned} & \text { of } A B \text {. }\end{aligned}$ $\|A-B\|_{F}=\sqrt{3^{2}+2^{2}}=\sqrt{13}$
§ Condition number
A very useful quantity for understanding the behavior of a matrix is its condition number.

Definition: The condition number of a nonsingular $n \times n$ matrix A (rank $A=n$) is the ratio between its largest σ_{1} and smallest singular values σ_{n}, namely,

$$
\kappa(A)=\frac{\sigma_{1}}{\sigma_{n}} .
$$

The condition number $\kappa(A)$ measures the "sensitivity of operations" we perform with A to changes in the input data.

In particular, if $\kappa(A)$ is very large, then small changes in \mathbf{x} can result in large changes in $A \mathbf{x}$.

Fact 13: If A is $n \times n$ nonsingular matrix, then A and A^{-1} have the same condition number.

$$
\begin{aligned}
& A_{n \times n}=\sqcup \Sigma V^{\top}, \quad \Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \\
& & \\
& \sigma_{n}
\end{array}\right]_{n \times n}, \sigma_{1} z \ldots z \sigma_{n}>0 . \\
& A^{-1}=V \sum^{-1} U^{\top}, \quad \Sigma^{-1}=\left[\begin{array}{lll}
\gamma_{1} & & \\
& \cdots & \sigma_{n}
\end{array}\right] .
\end{aligned}
$$

A has. singulare values $\sigma_{1} \geq \ldots \geq \sigma_{n}$.

$$
A^{-1} \quad 1 / \quad 1 / \sigma_{0} \leq \ldots \leq 1 \not \sigma_{n}
$$

$$
\begin{array}{ll}
K(A)=\frac{\sigma_{1}}{\sigma_{n}} & ; K\left(A^{-1}\right)=\frac{\frac{1}{\sigma_{n}}}{\frac{1}{\sigma_{1}}}=\frac{\sigma_{1}}{\sigma_{n}} \\
\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2} .
\end{array}
$$

$\|A\|_{2}=\sigma_{1}$ (larges singular vance)

$$
\left\|_{\text {MATH 4242-Week } 15-1} A^{-1}\right\|_{2}=\frac{1}{\sigma_{n}}\left(7, \quad \text { of } A_{\text {spring }}^{-1}\right)_{202}
$$

Poll Question 1: Suppose $n \times n$ matrix A has full SVD
$A=U D V^{T}, \quad$ where U, V are orthogonal matrices and D is diagonal matrix.荧
Then which one of the following is the full SVD of A^{T}
$\left.\begin{array}{rl}\text { A) } U D V^{T} & A^{\top}=\left(U D U^{\top}\right)^{\top}\end{array}\right)=V \underline{D}^{\top} U^{\top}$.

