Lecture 38: Quick review from previous lecture

- Let $A \in M_{m \times n}$ ($m \times n$ real matrices) of rank r with positive singular values $\sigma_{1} \geq \ldots \geq \sigma_{r}$. Then

$$
\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}}
$$

and

$$
\|A\|_{2}=\sigma_{1} \quad \text { (largest singular value). }
$$

- The condition number of a nonsingular $n \times n$ matrix is the ratio between its largest and smallest singular values, namely,

$$
\kappa(A)=\frac{\sigma_{1}}{\sigma_{n}}
$$

Today we will

- review some concepts
- Lecture will be recorded -
- Exam 3: 5/3 (Monday) in lecture.
- Practice Exam is on Canvas now.
- This Friday's office hour is canceled. If you have questions on Friday, we can discuss after the lecture. So HW 13 is extended to Saturday by 6pm.
- Additional office hours will be held this Saturday from $10 \mathrm{am}-11 \mathrm{am}$.

Problem 1: Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 0\end{array}\right)$. Find A^{-1}.

$$
\left.\left.\begin{array}{l}
(A \mid I)=\left(\left.\begin{array}{lll|lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array} \right\rvert\,\right.
\end{array} \right\rvert\, \begin{array}{llll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), ~\left(\left.\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array} \right\rvert\, \begin{array}{ccc}
-1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right) .
$$

Problem 2: Solve the system $A \mathbf{x}=\mathbf{b}$, where A is the same matrix from Problem 1, and $\mathbf{b}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) . \quad x=A^{-1} b=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
$\Gamma(A \mid b) \longrightarrow \quad$ to solve x
Γ Normal Equation: $A^{\top} A x=A^{\top} b$.
If $A^{\top} A$ is nonsingular, then the least squares solution $x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b$.

Problem 3: Find all solutions to the linear system $A \mathbf{x}=\mathbf{b}$, where $A=$

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 \\
1 & 1 & 2 & 1
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) . \quad \vec{x}=(x, y, z, \omega)^{\top} \\
& \\
& (A \mid b) \xrightarrow{(3)-(1)}\left(\begin{array}{lll|l}
\left.\frac{1}{0} \right\rvert\, & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& z=0 \\
& y=w \\
& x=-y-w=-2 w .
\end{aligned}
$$

General solutions ave $\left(\begin{array}{c}-2 \omega \\ \omega \\ 0 \\ \omega\end{array}\right)=\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right) \omega, w \in \mathbb{R}$.

Problem 4: Suppose A and B are n-by-n matrices and B is orthogonal. If $\operatorname{det}(A)=-2$, what is $\operatorname{det}(A B)$?
(1) $\operatorname{det}(c A)=c^{n} \operatorname{det} A, A_{n \times n}$.
(2) $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$.
(3) Q is sothogonal

$$
Q^{\top} Q=Q Q^{\top}=I
$$

(a) $Q^{\top}=Q^{-1}$
(b) $Q=\left[\begin{array}{lll}v_{1} & \cdots & \left.v_{n}\right]_{n \times n} \\ v_{i}\end{array}\right.$ $\left\{v_{i}\right\}$ is orthonormal basis of \mathbb{R}^{n}.
(c) $\operatorname{det} Q= \pm 1$.

Problem 5:
a) Find the symmetric 3 -by- 3 matrix K satisfying quadratic form

$$
\begin{aligned}
& q(\mathbf{x})=\mathbf{x}^{T} K \mathbf{x}=x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}+2 x_{3}^{2}, \\
& \begin{array}{l}
\downarrow / 2=2 \\
\text { for all vectors } \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} . \\
a_{\mathbf{y}_{1}}{ }^{2}+b \boldsymbol{y}_{2}{ }^{2}+c y_{3}{ }^{2} \\
K=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]_{3 \times 3}
\end{array} .
\end{aligned}
$$

b) Find the spectral factorization of $K . \quad\left[K=Q D Q^{\top}, Q\right.$ is orthoyond

$$
\begin{aligned}
& 0=\operatorname{det}(K-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 2 & 0 \\
2 & 1-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right) \\
& =(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right)=(2-\lambda)^{0}\left((1-\lambda)^{2}-4\right) \Rightarrow \lambda=3,2,-1 \text {. } \\
& \lambda=3=\frac{\text { Find } v_{1} \in \operatorname{ker}(K-3 I)}{\lambda}: K-3 I=\left[\begin{array}{ccc}
-2 & 2 & 0 \\
2 & -2 & 0 \\
0 & 0 & -1
\end{array}\right] \\
& \xrightarrow{(2)+(1)}\left[\begin{array}{ccc}
-2 & 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] . \quad V_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \xrightarrow{\text { normalize }}-1.0 . \\
& \lambda=2=K-2 I=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] . \quad V_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad q_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) . \\
& \underset{\text { pectial factorization is }}{\lambda=-1}=K+I=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] . \quad v_{3}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \longrightarrow q_{3}=\frac{1}{\sqrt{(}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

$$
K=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right] D\left(q_{1} q_{2} q_{3}\right]^{\top}, D=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

c) Diagonalize this quadratic form in (a).

$$
\begin{aligned}
q(x)=x^{\top} K x & =x^{\top} Q D Q^{\top} x \\
& =y^{\top} D y \\
& =3 y_{1}^{2}+2 y_{2}^{2}-y_{1}^{2}
\end{aligned}
$$

d) Find all eigenvalues of K and use that to determine if K^{3} is positive definite. are possinigble

Problem 6: Prove that if A is any matrix, then $A A^{T}$ and $A^{T} A$ are both symmetric matrices.

$$
\left(A A^{\top}\right)^{\top}=\left(A^{\top}\right)^{\top} A^{\top}=A A^{\top} \text {. So } A A^{\top} \text { is ysmmain }
$$

Similarly,

$$
\left(A^{\top} A\right)^{\top}=A^{\top} A
$$

Problem 7:
a) Compute $\|\mathbf{x}\|_{2}$, where $\mathbf{x}=(1,2,3)^{T} .=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}$ eigenvalues $-4,-1,7$;
0 singular values. $4,1,7$.
b) Find the natural matrix norm of $A=\left(\begin{array}{rrr}-4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 7\end{array}\right)$, with respect to the standard Euclidean norm $\|\mathbf{y}\|_{2}=\sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}$ on \mathbb{R}^{3}.

$$
\begin{aligned}
& \|A\|_{2}=\max \{1-41,|-11,|7|\}=7 . \\
& \frac{R K}{R H A \|_{F}}=\sqrt{(-4)^{2}+(-1)^{2}+\eta^{2}} .
\end{aligned}
$$

Problem 8: Find all vectors in \mathbb{R}^{3} orthogonal to both $(1,2,0)^{T}$ and $(0,1,2)^{T}$ with respect to usual inner product.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right)^{(}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{0}{0} . \\
& \left(\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right) z, \forall z \in \mathbb{R} .
\end{aligned}
$$

Problem 9: Define the operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $L[\mathbf{v}]=A \mathbf{v}$, where $A=$
 both domain and codomain.

$$
\begin{array}{cc}
\prime \prime & \prime \prime \\
v_{1} & v_{2}
\end{array}
$$

$$
\begin{aligned}
& \left\{e_{1}, e_{2}\right\} \xrightarrow{A}\left\{e_{1}, e_{2}\right\} \\
& \left\{v_{1}, v_{2}\right\} \xrightarrow{B}\left\{v_{1}, v_{2}\right\} \\
& B=S^{+1} A S \text { where } S=\left[v_{1} v_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
B=S^{-1} A S & =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]^{-1}\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\
& =6\left[\begin{array}{rr}
4 & 7 \\
-1 & -1
\end{array}\right]
\end{aligned}
$$

Problem 10: Write down the 2-by-2 matrix A satisfying $A \mathbf{v}_{1}=\mathbf{w}_{1}$ and $A \mathbf{v}_{2}=$ $2 \mathbf{w}_{2}$, where $\mathbf{v}_{1}=(1,1)^{T}, \mathbf{v}_{2}=(-1,1)^{T}, \mathbf{w}_{1}=(1,1)^{T}$, and $\mathbf{w}_{2}=(-2,-2)^{T}$.

$$
\begin{aligned}
A\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right] & =\left[\begin{array}{ll}
w_{1} & 2 w_{2}
\end{array}\right] \\
A & =\left[\begin{array}{lll}
w_{1} & 2 w_{2}
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]^{-1} \\
& =\frac{1}{2}\left[\begin{array}{cc}
5 & -3 \\
5 & -3
\end{array}\right] \cdot x y
\end{aligned}
$$

Problem 11: Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{rr}-1 & 1 \\ 2 & 0\end{array}\right)$. Clearly indicate which eigenvector belongs to each eigenvalue. Then diagonalize the matrix.

To be continued!

Problem 12: Find a 2-by-2 matrix A with eigenvalues 2 and -3 and corsesponding eigenvectors $(1,-1)^{T}$ and $(1,0)^{T}$.

$$
\begin{aligned}
A\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right] & =\left[\begin{array}{ll}
2 v_{1} & -3 \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right] \\
\Rightarrow A & =\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
-3 & -5 \\
0 & 2
\end{array}\right] .
\end{aligned}
$$

Problem 13: Find a 2-by-3 matrix having rank 1 whose singular value is 2 , left singular vector is $(1,2)^{T} / \sqrt{5}$, and right singular vector is $(1,0,1)^{T} / \sqrt{2}$.
7. be continued!

