
Lecture 39: Quick review from previous lecture

LetA 2 Mm⇥n (m⇥n real matrices) of rank r. SupposeA has positive singular

values �1 � . . . � �r and corresponding right singular vectors v1, . . . ,vr and

left singular vectors u1, . . . ,ur. Then

A = �1u1v
T
1 + . . . + �rurv

T
r .

—————————————————————————————————

Today we will

review some concepts

- Lecture will be recorded -

—————————————————————————————————

Exam 3: 5/3 (Monday) in lecture.

Practice Exam is on Canvas now.

This Friday’s o�ce hour is moved to the time slot after today’s lecture.

So HW 13 is extended to Saturday by 6pm.

Additional o�ce hours will be held this Saturday from 10 am-11 am.
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Problem 10: Write down the 2-by-2 matrix A satisfying Av1 = w1 and Av2 =

2w2, where v1 = (1, 1)T , v2 = (�1, 1)T , w1 = (1, 1)T , and w2 = (�2,�2)
T
.

[We have discussed in Lecture 38]

Problem 11: Find the eigenvalues and eigenvectors of the matrixA =

✓
�1 1

2 0

◆
.

Clearly indicate which eigenvector belongs to each eigenvalue. Then diagonalize the

matrix.

Q: Let L[v] = Av. Find the matrix representation of L in a basis consisting of

eigenvectors {v1,v2}.
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Problem 12: Find a 2-by-2 matrix A with eigenvalues 2 and �3 and corre-

sponding eigenvectors (1,�1)
T
and (1, 0)T .

[We have discussed in Lecture 38]

Problem 13: Find a 2-by-3 matrix having rank 1 whose singular value is 2, left

singular vector is (1, 2)T/
p
5, and right singular vector is (1, 0, 1)T/

p
2.
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Problem 14: Write out the full and reduced SVD of the matrixA =

✓
1 �1

1 �1

◆
.
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Problem 15: Suppose A is a 3-by-3 symmetric matrix with eigenvalues 1, 3,�7.

Find the operator norm of A and the Frobenius norm of A.

Problem 16: Suppose A has characteristic polynomial pA(�) = �2 � 2� + 7.

Find the determinant of A and the trace of A.

Problem 17: Suppose A = AT
is a symmetric 2-by-2 matrix, and detA = 6.

Suppose that Av = 2v, where v = (1, 1)T . Write the spectral factorization of A.
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Problem 18: Let P (n)
be the space of polynomials of degree  n.

a) Let L[p](x) =
R x
0 p(t)dt denote the integration operator. Find the matrix

representation of L in the monomial bases of P (1)
and P (2)

.

b) Let T [p](x) = p0(x). Find the matrix representation of T : W ! V in the

monomial bases of P (2)
and P (1)

.
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Problem 19: Suppose A is a 3-by-3 matrix with singular values 1,2, and 3.

What is the condition number of A? What are the singular values of A�1
? What

are the singular values of AT
? What is the determinant of A?

Problem 20: Suppose A is a 3-by-3 symmetric matrix of the form

A = 2u1u
T
1 � 3u2u

T
2 + 6u3u

T
3 ,

where u1,u2,u3 2 Rn
are nonzero column vector and are orthonormal. What is

the condition number of A? What are the singular values of A�1
? What are the

singular values of AT
? What is the determinant of A?

MATH 4242-Week 15-3 7 Spring 2021

03oz 9

1) KIA ) = = %

2) At 's singular values = ÷ ÷ , ÷
.

3)
.

At 4 = 3
,

2
,
I

.

4) det A = det @ ZVT )
= det Udet I detvt

= 1=1 detf? :?) -1-1 =

.

-

= QDQT __ a/
2

-3,1€

A- = AT
.

Ji = 1 Mil
.

9=6
, 9--3.9=2

.

1) KA ) = 3

2)
: %

,
%
,
Yz

detQT=de- Q "
3)

. AT = 6
,

3
,
2

. f =d¥Q
41 detA-dexQdetdde-YQT-de.edu

= 2.1-31.6
dei @DQ') =-34



Problem 21: Suppose A is a matrix with singular values 2, 3 and 8. Suppose

u and v are the left and right singular vectors of A with singular value 8, and let

B = 8uvT
. Find kA� Bk2 and kA� BkF .

Problem 22: SupposeA = 2uvT
, where u = (1,�1)

T/
p
2 and v = (1, 1)T/

p
2.

Let b = (1, 0)T . (1) Find the unique vector x that minimizes kAx� bk2 and has

the smallest Euclidean norm. (2) Find all least squares solutions to Ax = b. That
is, find all vectors x that minimize kAx� bk2.
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