Lecture 39: Quick review from previous lecture

- Let $A \in M_{m \times n}(m \times n$ real matrices) of rank r. Suppose A has positive singular values $\sigma_{1} \geq \ldots \geq \sigma_{r}$ and corresponding right singular vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ and left singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$. Then

$$
A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\ldots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T} . \quad \mathbb{R}^{m}
$$

Today we will

- Lecture will be recorded -

$$
=\sigma_{1} u_{1} v_{1}^{\top}+\ldots+\sigma_{\gamma} u_{r} v_{\gamma}^{\top}
$$

- Exam 3: 5/3 (Monday) in lecture.
- Practice Exam is on Canvas now.
- This Friday's office hour is moved to the time slot after today's lecture. So HW 13 is extended to Saturday by bpm.
- Additional office hours will be held this Saturday from 10 am-11 am.

Problem 10: Write down the 2-by-2 matrix A satisfying $A \mathbf{v}_{1}=\mathbf{w}_{1}$ and $A \mathbf{v}_{2}=$ $2 \mathbf{w}_{2}$, where $\mathbf{v}_{1}=(1,1)^{T}, \mathbf{v}_{2}=(-1,1)^{T}, \mathbf{w}_{1}=(1,1)^{T}$, and $\mathbf{w}_{2}=(-2,-2)^{T}$.
[We have discussed in Lecture 38]

Problem 11: Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{rr}-1 & 1 \\ 2 & 0\end{array}\right)$. Clearly indicate which eigenvector belongs to each eigenvalue. Then diagonalize the matrix.

$$
\begin{aligned}
& 0=\operatorname{det}(A-\lambda I) . \lambda=1,-2 . \\
& \underline{\lambda=1}=A-I=\left(\begin{array}{cc}
-2 & 1 \\
2 & -1
\end{array}\right) \quad v_{1}=\binom{1}{2} \\
& \xrightarrow{(2)+(1)}\left(\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right) . \\
& \lambda=-2=A+2 I=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right), \quad v_{2}=\binom{1}{-1} \text {. } \\
& A=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]^{-1}
\end{aligned}
$$

$A=V D V^{-1}$
D : diagonal V = nonsingular.

4

Q: Let $L[\mathbf{v}]=A \mathbf{v}$. Find the matrix representation of L in a basis consisting of eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

MATH 4242-Week 15-3

$$
B=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right] .
$$

Problem 12: Find a 2 -by-2 matrix A with eigenvalues 2 and -3 and caresponding eigenvectors $(1,-1)^{T}$ and $(1,0)^{T}$.
[We have discussed in Lecture 38]

Problem 13: Find a 2 -by- 3 matrix having rank 1 whose singular value is 2 , left singular vector is $(1,2)^{T} / \sqrt{5}$ and right singular vector is $(1,0,1)^{T} / \sqrt{2}$.

$\mathbb{R}_{\substack{3}}^{\operatorname{cosing} A} \underset{\left\{v_{1}\right\}}{\operatorname{sen} A} \xrightarrow{n_{1}}$

$V_{1}^{\prime \prime} \mathbb{R}^{2}$

$A_{2 \times 3}=\left[u_{1}\right][2]_{1 \times 1}\left[v_{1}^{\top}\right]$.
$=\binom{1 / \sqrt{3}}{2 / \sqrt{5}}[2]\left[\begin{array}{lll}1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right]$
$=\binom{1 / \sqrt{3}}{2 / \sqrt{5}}\left[\begin{array}{lll}2 & 0 & \frac{2}{\sqrt{2}}\end{array}\right]$
$=\left[\begin{array}{lll}\frac{2}{\sqrt{10}} & 0 & \frac{2}{\sqrt{10}} \\ \frac{4}{\sqrt{10}} & 0 & \frac{4}{\sqrt{10}}\end{array}\right] \underset{Y}{y}$
$A=2 u_{1} v_{1}^{\top}$.

Problem 14: Write out the full and reduced SVD of the matrix $A=\left(\begin{array}{ll}1 & -1 \\ 1 & -1 \\ 1 & -1\end{array}\right)$.
(2)

$$
\begin{array}{ll}
\underline{\lambda=4}: & A^{\top} A-4 I \quad . \quad v_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}\binom{(\text { so that }}{\left(v_{1} \|_{2}=1\right)} \\
\underline{\lambda=0}: & v_{2}=\frac{1}{\sqrt{2}}\binom{1}{1} . \\
u_{1}= & \frac{A v_{1}}{\sigma_{1}}=\frac{1}{\sqrt{2}}\binom{1}{1}
\end{array}
$$

$$
\text { Find } u_{2} \perp u_{1}: \quad u_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1} \text {. }
$$

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\top} \\
v_{2}^{\top}
\end{array}\right](\text { Full suD) } \\
& =\left[u_{1}\right]\left[\begin{array}{ll}
2
\end{array}\right]\left[v_{1}^{\top}\right] \quad \text { (Reducedsuo) } \\
A & =2 u_{1} v_{1}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } A^{\top} A=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right) \text {. } \\
& 0=\operatorname{det}\left(A^{\top} A-\lambda I\right) . \lambda=4,0 \text {. } \\
& \sigma_{1}=2, \quad \sigma_{2}=0 \text {. }
\end{aligned}
$$

$$
\sigma_{1}=7, \sigma_{2}=3, \sigma_{3}=1 .
$$

Problem 15: Suppose A is a 3 -by-3 symmetric matrix with eigenvalues $1,3,-7$. Find the operator norm of A and the Frobenius norm of A.

$$
\begin{aligned}
& \|A\|_{2}=7 \\
& \|A\|_{F}=\sqrt{7^{2}+3^{2}+1^{2}}=\sqrt{59} .
\end{aligned}
$$

(1) $\|A\|_{2}=\sigma_{1}$
(2) $\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\ldots+\sigma_{v}^{2}}$
if $\operatorname{rank} A=r$
(3) $A=A^{\top}$:

$$
\sigma_{i}=\left|\lambda_{i}\right|
$$

Problem 16: Suppose A has characteristic polynomial $p_{A}(\lambda)=\lambda^{2}-2 \lambda+7$. Find the determinant of A and the trace of A. A has 2 eigenvalues λ_{1}, λ_{2})

$$
\begin{array}{rl|l}
P_{A}(\lambda) & =\operatorname{det}(A-\lambda I) \\
& =\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \\
& =\lambda^{2}-\left(\lambda_{1}+\lambda_{2}\right) \lambda+\lambda_{1} \lambda_{2} \\
\lambda_{1}+\lambda_{2} & =2=\operatorname{tr}(A) ; \\
\lambda_{1} \lambda_{2} & =7 . & \operatorname{tr} A=2 \lambda_{i} \\
\operatorname{det} A=\lambda_{1} \cdots \lambda_{n} .
\end{array} \quad \begin{aligned}
&
\end{aligned}
$$

Problem 17: Suppose $A=A^{T}$ is a symmetric 2-by-2 matrix, and $\operatorname{det} A=6$. Suppose that $A \mathbf{v}=2 \mathbf{N}$, where $\mathbf{v}=(1,1)^{T}$. Write the spectral factorization of A.

$$
\begin{aligned}
6=\operatorname{det} A & =2 \cdot 3 \\
\vdots & =\binom{1}{1} \quad\left\langle v_{2}, v_{1}\right\rangle=O \quad\left(\text { since } A=A^{\top}\right) . \\
v_{2} & =\binom{1}{-1} .
\end{aligned}
$$

normalize $v, v_{2}: q_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, q_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$.

$$
A=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{\sqrt{2}} & 1 / \sqrt{2} \\
/ \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]^{7}
$$

Problem 18: Let $\mathcal{P}^{(n)}$ be the space of polynomials of degree $\leq n$.
a) Let $L[p](x)=\int_{0}^{x} p(t) d t$ denote the integration operator. Find the matrix representation of L in the monomial bases of $\mathcal{P}^{(1)}$ and $\mathcal{P}^{(2)}$

$$
\begin{aligned}
& L[x]=\int_{0}^{x} t d t=\frac{1}{2} x^{2} \rightarrow \frac{\left(x^{2}, x, 1\right\}}{\rightarrow} \\
& L[1]=\left(\begin{array}{l}
1 / 2 \\
0 \\
0
\end{array}\right) \\
& L\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right. \\
& \left.L\left[\begin{array}{l}
a \\
b
\end{array}\right)\right]=\left[\begin{array}{ll}
1 / 2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{aligned}
$$

b) Let $T[p](x)=p^{\prime}(x)$. Find the matrix representation of $T: W \rightarrow V$ in the monomial bases of $\mathcal{P}^{(2)}$ and $\mathcal{P}^{(1)} . \quad T=P_{\left(x^{2}, x, 1 \mid\right.}^{(2)} \rightarrow P_{\{x, 1\}}^{(1)}$

$$
\begin{aligned}
T\left[x^{2}\right]= & 2 x \rightarrow\binom{2}{0} \\
T[x]= & \rightarrow\binom{0}{1} \\
T[1]= & \rightarrow\binom{0}{0} \\
& \left.T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] .
\end{aligned}
$$

Problem 19: \quad Suppose A is a 3 -by-3 matrix with singular values $\boldsymbol{\sigma}_{3} \boldsymbol{\sigma}_{2}, 2$, and σ_{1}. What is the condition number of A ? What are the singular values of A^{-1} ? What are the singular values of A^{T} ? What is the determinant of A ?

1) $K(A)=\frac{\sigma_{1}}{\sigma_{3}}=3 / 1$
2) A^{-1} 's singular values $: \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$.
3). $A^{\top}=3,2,1$.
3) $\operatorname{det} A=\operatorname{det}\left(U \Sigma V^{\top}\right)$
$=\operatorname{det} L \operatorname{det} \Sigma \operatorname{det} V^{\top}$
$= \pm 1 \operatorname{det}\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right] \pm 1= \pm 6$
Problem 20: Suppose A is a 3 -by- 3 symmetric matrix of the form

$$
\left.A=2 \mathbf{u}_{1} \mathbf{u}_{1}^{T}-3 \mathbf{u}_{2} \mathbf{u}_{2}^{T}+6 \mathbf{u}_{3} \mathbf{u}_{3}^{T},=Q D Q^{\top}=Q \Gamma^{2}-3\right]{ }_{6} Q^{\top}
$$

where $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3} \in \mathbb{R}^{n}$ are nonzero column vector and are orthonormal. What is the condition number of A ? What are the singular values of A^{-1} ? What are the singular values of A^{T} ? What is the determinant of A ?

$$
A=A^{\top} . \quad \sigma_{i}=\left|\lambda_{i}\right| . \quad \sigma_{1}=6, \quad \sigma_{2}=3, \quad \sigma_{3}=2 .
$$

1) $k(A)=3$
2) $A^{-1}=1 / 6,1 / 3,1 / 2$
3). $A^{\top}=6,3,2$.

$$
\begin{aligned}
\operatorname{det} Q^{\top} & =\operatorname{det} Q^{-1} \\
& =\frac{1}{\operatorname{det} Q}
\end{aligned}
$$

$$
\text { 4) } \begin{aligned}
\operatorname{det} A & =\operatorname{det} Q \operatorname{det} D \operatorname{det} Q^{\top}
\end{aligned}=\operatorname{det} D 8
$$

Problem 21: Suppose A is a matrix with singular values 2,3 and 8 . Suppose \mathbf{u} and \mathbf{v} are the left and right singular vectors of A with singular value 8 , and let $B=8 \mathbf{u v}^{T}$. Find $\|A-B\|_{2}$ and $\|A-B\|_{F}$.

$$
\begin{aligned}
A & =\frac{8 u v^{\top}}{8 u v^{\top}}\left(3 u_{2} v_{2}^{\top}+2 u_{3} v_{3}^{\top} .\right. \\
B & \left.=3 u^{\top} \text { rank appro. of } A\right) . \\
A-B & =3 u_{2} v_{2}^{\top}+2 u_{3} v_{3}^{\top} \text { has singular. } \\
\|A-B\|_{2} & =3 \\
\|A-B\|_{F} & =\sqrt{3^{2}+2^{2}}=\sqrt{13} .
\end{aligned}
$$

$Q:$ Find rank 2 appro of $A: \frac{8 u v^{\top}+3 u_{2} v_{2}^{\top}}{}$ Problem 22: Suppose $A=2 \mathbf{u v}^{T}$, where $\mathbf{u}=(1,-1)^{T} / \sqrt{2}$ and $\mathbf{v}=(1,1)^{T} / \sqrt{2}$. Let $\mathbf{b}=(1,0)^{T}$. (1) Find the unique vector \mathbf{x} that minimizes $\|A \mathbf{x}-\mathbf{b}\|_{2}$ and has the smallest Euclidean norm. (2) Find all least squares solutions to $A \mathbf{x}=\mathbf{b}$. That is, find all vectors \mathbf{x} that minimize $\|A \mathbf{x}-\mathbf{b}\|_{2}$.

$$
\text { (1) } A=2 u v^{\top}=[u][z]\left[v^{\top}\right] \text { (Reduced SuD) }
$$

Psendoinverse

$$
\begin{aligned}
A^{+} & =\left[v^{\top}\right]\left[\frac{1}{2}\right]\left[u^{\top}\right] \\
x^{*} & =A^{+} b=\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)\binom{1}{0}=\binom{\frac{1}{4}}{\frac{1}{4}}
\end{aligned}
$$

(2) $\operatorname{Ker} A=\left\{\binom{1}{-1}+1 t \in \mathbb{R}\right\}$. (Orthogonal to)

